Fiber

CHAPTERS

Fi	be	r	P	a	t	С	
0			_				

Bare Fiber

Fiber Optomechanics Fiber Components Test and Measurement

VSECTIONS

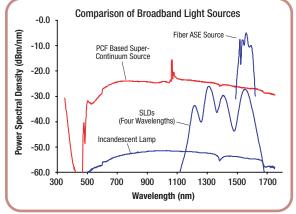
SM Fiber PM Fiber

Doped Fiber

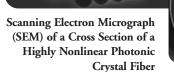
PCF

MM Fiber

Plastic Optical Fiber

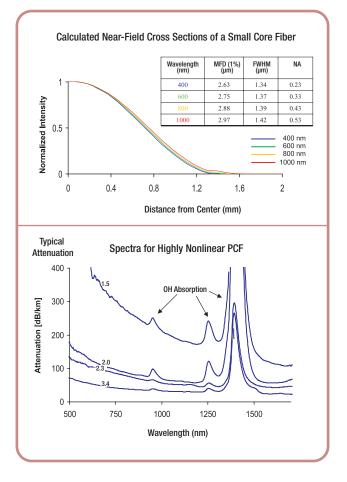

Highly Nonlinear Photonic Crystal Fiber (Page 1 of 2)

Nonlinear Fibers for Supercontinuum from Visible to NIR


For current pricing, please see our website.

Supercontinuum (SC) sources are a new type of light source that combine the high brightness of a laser (output in a single transverse mode) with a spectral bandwidth usually associated with an incandescent source. This combination often drastically improves the signal-to-noise ratio, reduces the measurement time, or widens the spectral range in applications that require a broadband source, including high-resolution spectroscopy, the characterization of optical components, or optical coherence tomography.

Despite the complex nature of the nonlinear optical processes that convert the narrowband output of a laser into a supercontinuum, the practical realization can be surprisingly straightforward. All that is required is a high-peak-power laser and a nonlinear element with the right dispersion characteristics. The high concentration of power, long length at comparatively low loss, and ability to achieve zero dispersion at wavelengths shorter than 1,250 nm – something that is not achievable



with conventional fibers – make small-core PCF (Photonic Crystal Fiber) ideally suited as the nonlinear element in an SC source. NKT Photonics offers a range of small-core fibers suitable for use with fs Ti:sapphire lasers (NL Series of fiber), as well as a fiber specifically designed to generate SC radiation from the output of a compact, low-cost, Nd³+-YAG microchip laser (SC-5.0-1040). The graph above compares the time averaged power spectral density for supercontinuum sources to that of other typical broadband sources. Detailed application notes are available on our website.

Applications

- Supercontinuum Generation for Frequency Metrology, Spectroscopy, or Optical Coherence Tomography Using Ti:Sapphire, Nd³⁺-Microchip, or Nd³⁺ Fiber Laser Pumps
- Four-Wave Mixing and Self-Phase Modulation for Switching, Pulse-Forming, and Wavelength Conversion Applications
- Raman Amplification

Fiber

Highly Nonlinear Photonic Crystal Fiber (Page 2 of 2)

Fiber Patch		-							
Cables Bare Fiber	COATING DIAMETER	CLADDING DIAMETER	CORE DIAMETER (AVERAGE)	NONLINEAR COEFFICIENT $@ \lambda_0$	EFFECTIVE NONLINEAR AREA	NUMERICAL APERTURE @ λ ₀	MFD @ λ ₀	λ ₀ , ZERO DISPERSION WAVELENGTH	ITEM #
Fiber Optomechanics	220 µm	106 ± 1 μm	1.5 ± 0.1 μm	190 (W•km)-1	1.23 μm ²	0.5	1.1 ± .01 μm	670 ± 5 nm	NL-1.5-670-02
Fiber	220 μm	116 µm	$1.7 \pm 0.1 \ \mu m$	148 (W•km)-1	1.51 μm ²	0.45	1.2 ± 0.1 μm	700 ± 5 nm	NL-1.7-700-02
Components	220 µm	127 µm	1.8 ± 0.1 μm	122 (W•km)-1	1.76 μm ²	0.4	1.4 ± 0.1 μm	730 ± 5 nm	NL-1.8-730-02
Test and Measurement	220 µm	127 μm	$2.0 \pm 0.1 \ \mu m$	104 (W•km)-1	2.0 µm ²	0.42	1.4 ± 0.1 μm	745 ± 5 nm	NL-2.0-745-02
SECTIONS V	220 µm	147 μm	$2.3 \pm 0.1 \ \mu m$	75 (W•km) ⁻¹	2.7 μm ²	0.4	1.5 ± 0.1 μm	790 ± 5 nm	NL-2.3-790-02
	230 ± 5 µm	105 ± 1 µm	$2.4\pm0.1~\mu m$	70 (W•km)-1	2.8 μm ²	0.19	1.5 ± 0.1 μm	800 ± 5 nm	NL-2.4-800
SM Fiber	220 μm	136 µm	$2.8 \pm 0.1 \ \mu m$	47 (W•km)-1	4.0 μm ²	0.38	1.9 ± 0.1 μm	850 ± 5 nm	NL-2.8-850-02
PM Fiber	220 µm	154 µm	$3.2\pm0.1~\mu m$	37 (W•km)-1	4.8 μm ²	0.35	2.1 ± 0.1 μm	890 ± 5 nm	NL-3.3-890-02
Doped Fiber	240 ± 10 μm	120 ± 5 µm	$1.8 \pm 0.3 \ \mu m$	~95 (W•km) ⁻¹ @ 780 nm	-	0.38 ± 0.05 @ 780 nm	1.6 ± 0.3 μm @ 780 nm	Short: 750 ± 15 nm Long: 1260 ± 20 nm	NL-PM-750
PCF	244 ± 10 μm	125 ± 3 μm	$4.8 \pm 0.2 \ \mu m$	11 (W•km) ⁻¹ @ 1060 nm	-	0.20 ± 0.05 @ 1060 nm	4.0 ± 0.2 μm	1040 ± 10 nm	SC-5.0-1040
MM Fiber					1	1			

ITEM #	PRICE/m	\$	£	€	RMB	DESCRIPTION	
NU 15 (70.02	1 to 9 m	\$ 1,495.00	£ 1,076.40	€ 1.300,65	¥ 11,915.15		
NL-1.5-670-02 10 to 49 m		\$ 1,345.50	£ 968.76	€ 1.170,59	¥ 10,723.64	1.5 μm Core Diameter, Nonlinear PCF	
NL-1.7-700-02	1 to 9 m	\$ 1,495.00	£ 1,076.40	€ 1.300,65	¥ 11,915.15	1.7 μm Core Diameter, Nonlinear PCF	
10 to 49 m		\$ 1,345.50	£ 968.76	€ 1.170,59	¥ 10,723.64	1.7 µm Cofe Diameter, Nohlinear PCF	
NL-1.8-730-02	1 to 9 m	\$ 1,495.00	£ 1,076.40	€ 1.300,65	¥ 11,915.15	1.8 μm Core Diameter, Nonlinear PCF	
INL-1.8-7 30-02	10 to 49 m	\$ 1,345.50	£ 968.76	€ 1.170,59	¥ 10,723.64	1.6 µm Core Diameter, ivonimear i Cr	
NL-2.0-745-02	1 to 9 m	\$ 1,495.00	£ 1,076.40	€ 1.300,65	¥ 11,915.15	2.0 μm Core Diameter, Nonlinear PCF	
INL-2.0-/4)-02	10 to 49 m	\$ 1,345.50	£ 968.76	€ 1.170,59	¥ 10,723.64	2.0 µm Core Diameter, Nommear FCF	
NL-2.3-790-02	1 to 9 m	\$ 1,495.00	£ 1,076.40	€ 1.300,65	¥ 11,915.15	2.3 μm Core Diameter, Nonlinear PCF	
INL-2.3-790-02	10 to 49 m	\$ 1,345.50	£ 968.76	€ 1.170,59	¥ 10,723.64	2.5 µm Core Diameter, Nommear FCF	
NL-2.4-800	1 to 9 m	\$ 1,495.00	£ 1,076.40	€ 1.300,65	¥ 11,915.15	2.4 µm Core Diameter, Nonlinear PCF	
INL-2.4-800	10 to 49 m	\$ 1,345.50	£ 968.76	€ 1.170,59	¥ 10,723.64	2.4 µm Core Diameter, Nommear FCF	
NL-2.8-850-02	1 to 9 m	\$ 1,495.00	£ 1,076.40	€ 1.300,65	¥ 11,915.15	2.8 μm Core Diameter, Nonlinear PCF	
INL-2.8-890-02	10 to 49 m	\$ 1,345.50	£ 968.76	€ 1.170,59	¥ 10,723.64	2.8 µm Core Diameter, Nommear i Cr	
NL-3.3-890-02	1 to 9 m	\$ 1,495.00	£ 1,076.40	€ 1.300,65	¥ 11,915.15	3.3 μm Core Diameter, Nonlinear PCF	
INL-3.3-890-02	10 to 49 m	\$ 1,345.50	£ 968.76	€ 1.170,59	¥ 10,723.64	5.5 µm Core Diameter, Nommear FCF	
NL-PM-750	1 to 9 m	\$ 1,495.00	£ 1,076.40	€ 1.300,65	¥ 11,915.15	1.8 μm Core Diameter, Polarization-Maintaining	
INL-FIVI-/ 30	10 to 49 m	\$ 1,345.50	£ 968.76	€ 1.170,59	¥ 10,723.64	Nonlinear PCF	
SC-5.0-1040	1 to 9 m	\$ 629.00	£ 452.88	€ 547,23	¥ 5,013.13	Nonlinear PCF for Supercontinuun Generation,	
3C-9.0-1040	10 to 49 m	\$ 478.04	£ 344.19	€ 415,90	¥ 3,809.98	with Nd ³ + Laser	

Have you seen our...

Red HeNe Lasers

- New Design
- ◆ 632.8 nm Central Wavelength
- ◆ 15 Models with CW Output Powers Range from 0.8 mW to 22.5 mW
- Linear Polarized or Unpolarized Output
- Frequency-Stabilized Model Available

Thorlabs offers an extensive selection of CE-compliant 632.8 nm (red) Helium-Neon (HeNe) Lasers with powers ranging from 0.8 mW to 22.5 mW as stock items. These HeNe lasers come with a built-in interlock for safety and are ideal for use in educational applications and also as alignment tools due to their excellent beam quality and long-term stability.

See pages 1276 - 1279

products

atch bles

CHAPTERS

NS 🗸 iber

iber

Fiber

PCF

Plastic Optical Fiber