
Pancharatnam’s phase : An example of geometric phase of light

The vector nature of electromagnetic waves is reflected in their polariza-
tion properties. Polarization, like the dynamical phase, represents a physical
degree of freedom of an electromagnetic wave. This means that during the
propagation of an electromagnetic wave through material media, the evo-
lution of both the dynamical phase and polarization must be considered.
An electromagnetic plane wave of angular frequency ! propagating in the
z-direction can be represented by its electric field
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where the dynamical phase

�(z, t) = (n! z/c)� !t , (2)

and �

o

is a constant angle representing the initial or reference phase, n is the
refractive index of the medium, and c is the speed of light. The polarization
state (orientation of the electric vector) of the wave is determined by the
relative magnitudes of the x and y components of the electric vector, E

x

and
E

y

, respectively, and their relative phase di↵erence �. The polarization state
of the wave and its evolution can be described as a point and its trajectory
on the surface of Poincare sphere or as a Jones vector and its transformation.

The evolution of the dynamical phase during propagation is governed by
the wave equation and is well known [See Eq. (2) above]. If the polarization
state of the wave changes during propagation, the wave may acquire an extra
contribution to its phase, which is in addition to the change in its dynamical
phase. This phase contribution was first discussed by Pancharatnam [1] and
is referred to as Pancharatnam’s phase of light. It is an example of geomet-
ric or topological phase of light. Under certain conditions, Panchratnam’s
phase may be related to Berry phase [2] although the former predates the
latter. During the propagation, wave polarization evolves and, in general,
the initial and final states of wave polarization may be di↵erent. Pancharat-
nam devised a way of comparing the phases of two coherent light waves in
di↵erent states of polarization. He showed that Pancharatnam’s phase of
light depends on the trajectory of wave polarization on Poincare sphere. For
a cyclic evolution of polarization, the trajectory of polarization on Poincare
sphere is a closed curve. In this case, Pancharatnam’s phase equals half the
solid angle subtended at the origin by the area enclosed by the closed curve
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on Poincare sphere. Pancharatnam’s phase can also be calculated by tracing
the evolution of wave polarization using Jones matrix description of wave
polarization.

There are several ways of observing Pancharatnam’s phase of light. They
all involve an interference experiment. This is hardly surprising, since we are
concerned with an observation of wave phase change, which can be measured
by comparing the phase of the initial and final waves in an interference ex-
periment. Figure here shows a modified Mach-Zehnder interferometer into
which, say, a left circularly polarized light wave is injected. The polariza-
tion in the two arms of the interferometer evolves di↵erently as the waves
travel to meet at the second beam splitter BS2. To see this we recall that
upon reflection, a left circularly polarized (LC) light wave is turned into a
right circularly polarized (RC) light wave. Then the polarization along the
upper path (subscript 1) evolves according to LC ! RC1 ! LC1 ! LC1 as
it emerges from beam splitter BS2. Along the lower path (subscript 2) it
evolves according to LC! LC2 ! RC2 ! LC2 ! RC2 as it emerges from
BS2. If a screen is now placed before the linear polarizer LP at port A,
no interference fringes will be observed since the two interfering beams have
orthogonal polarizations – LC1 is left circularly polarized and RC2 is right
circularly polarized. On the other hand, if a screen is placed after the linear
polarizer LP, its transmission axis at an angle ' to the x-axis, interference
fringes are observed. Moreover, as the linear polarizer LP is rotated, fringes
shift and as many fringes can be shifted as one likes by continuing to ro-
tate LP in the same sense. The direction of fringe shift is reversed if the
sense of rotation of LP is reversed. All through this, as LP is rotated, the
path di↵erence, if any, between the two arms of the interferometer does not
change. Thus the contribution of dynamical phase to fringe shift is zero and
the only contribution to phase change and, therefore, fringe shift comes from
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Pancharatnam’s phase.
For the case shown here, since only Pancharatnam’s phase (due to the

evolution of polarization) contributes to change in phase di↵erence, we can
calculate it by using Jones vector formalism. Jones vectors of LC1 and RC2

waves are
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After passing through the linear polarizer LP at an angle ' to the x-axis,
polarization states of the transmitted waves are
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Thus emerging from LP are two linearly polarized coherent beams (both
polarized along the transmission axis of LP) but with a relative phase di↵er-
ence of 2'. The same result is obtained by tracing the polarization trajec-
tories of the two waves on Poincare sphere. One finds that the magnitude
of area enclosed1 by the two polarization trajectories is 4', half of which is
Pancharatnam’s phase 2', in agreement with the result from Jones matrix
formalism.

In this setup, Pancharatnam’s phase depends on the angle ' of orientation
of LP and, therefore, changes as the linear polarizer is rotated. Moreover, the
sign of Pancharatnam’s phase depends on the sense in which linear polarizer
is rotated. This property, responsible for the reversal of the direction of fringe
shift with the reversal of the sense of rotation of LP, follows from the fact
that in computing Pancharatnam’s phase, the area on Poincare sphere must
be treated as a vector quantity. So the sign of the solid angle subtended at
the origin of Poincare sphere by the area enclosed by the closed polarization
trajectory is determined by the sense (clockwise or counter-clockwise) in
which the trajectory is traversed.

Polarization is a physical degree of freedom of an electromagnetic wave
and like the dynamical phase of the wave, the evolution of wave polarization

1
Both beams begin with the same initial polarization (LC) and end with the same

final polarization LP (which is di↵erent from the initial polarization). Therefore, their

polarization trajectories form a closed loop on Poincare sphere.
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must be considered during propagation. Pancharatnam’s phase is a fascinat-
ing manifestation of this additional degree of freedom associated with the
evolution of wave polarization.
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