Create an Account  |   Log In

View All »Matching Part Numbers


Your Shopping Cart is Empty
         

Photonics Lab Instructional Videos


Photonics Lab Instructional Videos


Please Wait

 

 

Photonics How-To Videos Providing Insights Into Getting Things Done in the Lab

Sometimes the best way to learn is by watching someone else. Thorlabs offers these videos to share tips, tricks, and methods we find ourselves frequently using in the lab. If you have any questions, feel free to contact Tech Support.

 

 

Align a Laser Beam Level to the Optical Table

 

  

Two methods for aligning a laser beam so that it propagates parallel to the surface of the optical table are demonstrated.

The first technique adjusts the pointing angle of a laser, whose tip and tilt can be adjusted. Using a ruler, the laser beam is leveled and directed along a row of tapped holes in the table.

Starting with this aligned beam, the technique for changing both the direction and the height of a beam from a fixed laser source is demonstrated. Two mirrors, which are set at different heights, direct the beam along another row of tapped holes in the table. The beam is then leveled at the height of the second mirror using two irises.

Components include a PL202 laser module, KM100 kinematic mounts, AD11NT adapter,  BHM1 ruler,  PF10-03-P01 mirrors, and IDA25 irises.

Date of Last Edit: Sept. 8, 2020

 

 

Mount a Translation Stage and Install a Motorized Actuator

 

  

The procedures for replacing the manual adjusters on a couple of translation stages with motorized actuators are demonstrated. Using the techniques described here allows the adjuster to be exchanged without damaging the stage.

The first example uses a MT1B linear translation stage with a 0.5" travel range. The adjuster screw is swapped for a ZFS13B stepper-motor-driven actuator. In the second half of the video, the micrometer on an XR25P linear translation stage with a 1" travel range is replaced by a Z825B DC-servo-motor-driven actuator.

In addition, the video provides an introduction to best practices for mounting these stages to a table or breadboard and demonstrates the use of the locking plate. 

Date of Last Edit: Sept. 4, 2020

 

 

Tuning a Free Space Optical Isolator for Operation at the Laser Wavelength

 

  

Tuning a Faraday isolator ensures optimal transmission of optical power from the source, as well as effective suppression of reflections traveling back towards the source. Tuning is demonstrated using an IO-3-532-LP polarization-dependent free-space isolator with a 510 nm to 550 nm operating range, an R2T post collar, a PL201 linearly polarized and collimated 520 nm laser, a S120C silicon power sensor, and a PM400 power meter.

These optical isolators output linearly polarized light and provide best performance when the input beam is linearly polarized.

Always follow your institution's laser safety guidelines. Unlike the low-power source used in this demonstration, other laser sources may be damaged by back reflections. Many stray reflections, which can endanger colleagues and the laser, can be avoided by blocking the laser beam when it is not needed. 

Date of Last Edit: Sept. 10, 2020

 


Posted Comments:
No Comments Posted
Log In  |   My Account  |   Contact Us  |   Careers  |   Privacy Policy  |   Home  |   FAQ  |   Site Index
Regional Websites:East Coast US | West Coast US | Asia | China | Japan
Copyright © 1999-2020 Thorlabs, Inc.
Sales: 1-973-300-3000
Technical Support: 1-973-300-3000


High Quality Thorlabs Logo 1000px:Save this Image