"; _cf_contextpath=""; _cf_ajaxscriptsrc="/cfthorscripts/ajax"; _cf_jsonprefix='//'; _cf_websocket_port=8578; _cf_flash_policy_port=1244; _cf_clientid='0A6B00EEE04170D3445C40A2CE169F73';/* ]]> */
| |||||||||||||||||||||||
Dichroic Atomic Vapor Spectroscopy Kit![]()
SKDAV See the DAV Spectroscopy Tab Below GC25075-RB Rubidium Vapor Cell ![]() Please Wait
*Alternate fiber inputs are available. Please contact techsupport@thorlabs.com. Features
The Thorlabs SKDAV kit consists of a proven set of components to construct a compact, fiber-coupled dichroic atomic vapor spectroscopy (DAVS) setup. It offers a method for producing a highly stable lock for tunable lasers, with a wide capture range, low power requirements, and steep signal slope. The kit also allows for the study of the Zeeman effect in atomic transitions. The kit has been designed using stock optics and mechanics as well as compatible custom components, making it compatible with other Thorlabs cage system and lens tube components. For a list of the major components and subsystems included in the DAVS kit, please see the Kit Contents tab. While the vapor cell heater is included in the kit, please note that the vapor cell and temperature controller must be purchased separately. Currently, we offer rubidium and potassium reference vapor cells, which are available below. A variety of custom vapor cells are also available; please contact techsupport@thorlabs.com for more details. Thorlabs' TC200 Temperature Controller is compatible with the cell heater and sold seporately below. We also offer pre-assembled Herriott cells for gas absorption spectroscopy applications. Dichroic Atomic Vapor Spectroscopy Custom Options and Assembly Services Please note that the Spectroscopy Kits do not come with vapor cells or a temperature controller. Rubidium and Potassium vapor cells are available below. Thorlabs offers the TC200 temperature controller that is compatible with the gas cell heater provided with the kit below.
DAVS Kit ContentsThorlabs' DAVS Kit contains the following subsystems: Fiber Input and PolarizerThe fiber input is designed with our F220FC-780 fiber collimator and cage system components. The F220FC-780 collimates the input from an FC/PC-terminated PM fiber, which must be purchased separately. For Rubidium, we recommend using our P1-780PM-FC-5 patch cable. For users who would prefer a free-space input, please contact us at techsupport@thorlabs.com for a quote for a kit without the fiber collimator and mounting mechanics. Once the light is collimated, the beam passes through a calcite Glan-Laser polarizer to ensure polarization purity. Both the fiber collimator and polarizer are provided with our cage system mounts, which easily allows for the user to add other components using our 30 mm cage system. Vapor Cell Heater and MagnetsThis assembly consists of our GCH25-75 vapor cell heater and a permanent magnet assembly specifically designed for the DAVS kit. Both magnets feature a hole in the center to allow the light to pass, and they attach to the gas cell heater using cage system ER rods included with the heater. The magnets are easily removed so that both absorption and DAV spectra may be measured. Please note that neither vapor cells nor a temperature controller for the GCH25-75 are included with the SKDAV. Rubidium and Potassium cells are available on the bottom of this page, and other atomic vapor cells are available upon request. Thorlabs offers the TC200 temperature controller which is compatible with the vapor cell heater. Output PrismAfter exiting the vapor cell and magnet assembly, the light will consist of two counter-rotating circular polarizations, which will be absorbed at either red- or blue-shifted frequencies (see the DAV Spectroscopy Tab for details). A zero-order quarter-wave plate (WPQ05M-780) will map the circular polarizations onto orthogonal linear polarizations. These linear polarizations are then split by a Wollaston Prism (WP10-B) at an angle of 20°. Both polarization optics are mounted into 30 mm cage system rotation mounts (the quarter-wave plate is mounted into a CRM1P while the prism is mounted using a CRM1. The CRM1P features a micrometer that allows for very small adjustments of the wave plate, which in turn leads to finer adjustments of the locking frequency. The use of these cage system and SM1 lens tube mounts would allow easy addition of additional optics or mechanical components according to experimental needs. ![]() Mirrors and Balanced DetectorA square folding mirror and kinematic mirror mount are included to direct the output of the Wollaston prism so that the assembly can be made more compact. If space is not an issue, this mirror can be left out of the system. After reflecting off of the square mirror, the two orthogonal polarizations are reflected separately by Ø1/2" mirrors, so that the beams can be aligned with the two inputs of our PDB210A balanced detector. The image to the right shows the beam path through the entire system, which illustrates the function of the mirrors. The balanced detector allows for measurement of three output voltages: the separate signals recorded from each photodiode, as well as the difference between the two measurement channels. This difference channel provides the DAVS signal, which can be used for a stable laser lock. The other two chanels are useful for alignment of the system, as well as to illustrate the principles of DAVS in teaching labs. Dichroic Atomic Vapor Spectroscopy![]() Figure 1. In the absence of a magnetic field, the absorption profile is independent of polarization, as shown by the red line in the graph. After a longitudinal magnetic field is applied, the Zeeman shift can be observed for the two circularly polarized components (green and blue lines). The useful DAVS signal is the difference between the absorption profiles of these two components. Introduction The following tutorial gives details on the basics of how DAVS spectroscopy works and how it can be utilized to lock a single-frequency laser, and the advantages of our DAVS system. Zeeman Splitting due to a Magnetic Field The DAVS System
![]() Figure 3. Using DAVS, a laser can be locked to any of the zero crossings in the above signal. The circled zero crossings correspond to transitions in atomic Rb, each of which can be tuned by approximately 500 MHz. Due to the presence of the magnetic field, the absorption profiles will be split as shown in Figure 1; the initial linear polarizer ensures that the light will be in one of the two circular polarization states to interact with the two Zeeman-split absorption curves. The quarter-wave plate will map the two circular polarization components into two orthogonal linear polarization components, which are then split by the Wollaston prism to be detected by the balanced detector. The resulting measured signal is the difference between the two Zeeman-split absorption curves, and is the yellow line shown in Figure 1. One of the advantages of the DAVS system lies in the quarter-wave plate. If the waveplate's axes are 45° from the axis of the input Glan-Taylor polarizer, then the two absorption components will be equal in intensity after being split by the Wollaston prism. The laser is locked to the zero-crossing in the signal measured by the balanced detector. The zero crossings for the Rb D2 transition are shown in Figure 3. As the quarter-wave plate is rotated, the two absorption profiles will pass through with differing intensities; this will cause the zero-crossing point to shift; in Thorlabs' DAVS kit, each of the locking points can be tuned by up to 500 MHz, which is referred to as the capture range.
![]() ![]() Click to Enlarge Borosilicate Glass Transmission Thorlabs offers Potassium and Rubidium cells that are compatible with our Spectroscopy Kits. These reference cells are fabricated from borosilicate glass, a rugged material known to resist chipping and cracking. They are tested to ensure that the transmission through the cell exceeds 84% for light in the 350 nm to 2.2 µm range. MSDS sheets are available and can be found by clicking on the red Docs icon ( Please note: These reference cells are subject to hazardous goods regulations and must be shipped separately using specifically regulated shipping methods and may require special shipping and handling charges. Next day delivery is not available. All orders will ship from our US warehouse regardless of destination and cannot be returned. Due to hazardous materials shipping regulations, we are currently unable to ship our reference cells to Brazil, China, or Uruguay. ![]() ![]() Click to Enlarge Back Panel of the TC200 Heater Controller
The TC200 Heater Controller is a benchtop controller intended for use with resistive heating elements rated up to 18 W, including the heaters in the Temperature-Controlled Liquid Crystal Retarders sold on this page. The unit will display the temperature in either °F, °C, or K, and can be programmed for up to five sequential temperature settings along with associated ramp and hold times for each level. A user programmable maximum temperature limit provides protection to the device being heated and a user-programmable power limit protects the heating element from being over driven. Other safety features include an Open Sensor Alarm that will shut down the driver if the temperature sensing element is missing or becomes disconnected. Capable of stand-alone operation from a simple keypad interface, the TC200 can be interfaced with a PC using a standard USB Type B connector using our TC200 Application Program, LabVIEW drivers, LabWindows drivers, or using a simple command-line interface from any terminal window. The TC200 is shipped with a 120 VAC power cord for use in the US while the TC200-EC is shipped with a 230 VAC power cord for use in Europe. If you require a power cord for another country, please contact your local sales office. | |||||||||||||||||||||||
|