Clicking this icon opens a window that contains specifications and mechanical drawings.
Clicking this icon allows you to download our standard support documentation.
Choose Item
Clicking the words "Choose Item" opens a drop-down list containing all of the in-stock lasers around the desired center wavelength. The red icon next to the serial number then allows you to download L-I-V and spectral measurements for that serial-numbered device.
QF4050D2: 12.0 mm x 6.0 mm x 2.1 mm (0.47" x 0.24" x 0.08")
QF4050D3 and QF4600D4: 12.0 mm x 7.5 mm x 2.1 mm (0.47" x 0.29" x 0.08")
4.05 µm (2469 cm-1) or 4.6 µm (2174 cm-1) Typical Center Wavelength
High Typical CW Output Powers of 800 mW, 1200 mW, or 2500 mW
Built-In Thermistor for Chip Temperature Measurements
Used for MIR Illumination / Testing and Signal Simulation
Custom Packages and Wavelengths from 3 to 12 µm Available by Contacting Tech Support
Designed for OEM customers, Thorlabs' High-Power D-Mount Fabry-Perot Quantum Cascade Lasers (QCLs) are among our most compact mid-IR lasers. Emitting at a 4.05 µm or 4.6 µm typical center wavelength, these lasers are mounted on a copper tungsten D-mount package that conserves space in situations where it is at a premium. Like our D-mount DFB laser, which feature a 4.5 mm cavity length, these D-mount FP lasers have an emission height of 2.6 mm, as measured from the bottom of the D-mount, but feature either a 6.0 mm or 7.5 mm cavity length. Each package is machined with two counterbored slots for mounting. The counterbored slots on the QF4050D2 are 1.5 mm long, and the counterbored slots on the QF4050D3 and QF4600D4 are 2 mm long. Compared to our FP lasers on C-mounts, these D-mount lasers provide higher optical output powers.
The drive voltage and current are supplied via two large gold contact pads, which are suitable for wire bonding or probe connections. Each QCL is electrically isolated from its D-mount. A built-in thermistor provides real-time temperature measurements for the control electronics. Heat loads for these lasers can be up to 25 W, so they must be mounted in a thermally conductive housing to prevent heat buildup. Please see the Handling tab for more tips and information for handling these laser packages.
The output power of these Fabry-Perot QCLs is the sum over the full spectral bandwidth. Quantum cascade lasers are ideal for MIR illumination and testing as well as thermal signal simulation. Before shipment, the output spectrum, optical power, and L-I-V curve are measured for each serial-numbered device by an automated test station. These measurements are available below and are also included on a data sheet with the laser.
Each D-mount QCL has a high-reflection (HR) coated back facet and a partial-reflection (PR) coated front facet (see the Appearance tab for details). While these QCLs are specified for CW output, pulsed output is possible provided that the CW maximum operating current is not exceeded. These lasers do not have built-in monitor photodiodes and therefore cannot be operated in constant power mode. For more information on performance, please contact Tech Support.
Click to Enlarge Maximum Output Power of Custom Fabry-Perot QCLs
FP QCLs at Custom Wavelengths
Thorlabs manufactures custom and OEM quantum cascade lasers in high volumes. We maintain chip inventory from 3 µm to 12 µm at our Jessup, Maryland, laser manufacturing facility and can reach multi-watt output on certain custom orders.
More details are available on the Custom & OEM Lasers tab. To inquire about pricing and availability, please contact us. A semiconductor specialist will contact you within 24 hours or the next business day.
Table Key
Current Controllers
Dual Current / Temperature Controllers
Current and Temperature Controllers
Use the tables below to select a compatible controller for our MIR lasers. The first table lists the controllers with which a particular MIR laser is compatible, and the second table contains selected information on each controller. Complete information on each controller is available in its full web presentation. We particularly recommend our ITC4002QCL and ITC4005QCL controllers, which have high compliance voltages of 17 V and 20 V, respectively. Together, these drivers support the current and voltage requirements of our entire line of Mid-IR Lasers. To get L-I-V and spectral measurements of a specific, serial-numbered device, click "Choose Item" next to the part number below, then click on the Docs Icon next to the serial number of the device.
Provide External Temperature Regulation (e.g., Heat Sinks, Fans, and/or Water Cooling)
Use a Constant Current Source Specifically Designed for Lasers
Observe Static Avoidance Practices
Be Careful When Making Electrical Connections
Do Not
Use Thermal Grease
Expose the Laser to Smoke, Dust, Oils, Adhesive Films, or Flux Fumes
Blow on the Laser
Drop the Laser Package
Use Solder with D-Mount Lasers
Handling D-Mount Lasers
Proper precautions must be taken when handling and using D-mount lasers. Otherwise, permanent damage to the device will occur. Members of our Technical Support staff are available to discuss possible operation issues.
Avoid Static Since these lasers are sensitive to electrostatic shock, they should always be handled using standard static avoidance practices.
Avoid Dust and Other Particulates Unlike TO can and butterfly packages, the laser chip of a D-mount laser is exposed to air; hence, there is no protection for the delicate laser chip. Contamination of the laser facets must be avoided. Do not blow on the laser or expose it to smoke, dust, oils, or adhesive films. The laser facet is particularly sensitive to dust accumulation. During standard operation, dust can burn onto this facet, which will lead to premature degradation of the laser. If operating a D-mount laser for long periods of time outside a cleanroom, it should be sealed in a container to prevent dust accumulation.
Use a Current Source Specifically Designed for Lasers These lasers should always be used with a high-quality constant current driver specifically designed for use with lasers, such as any current controller listed in the Drivers tab. Lab-grade power supplies will not provide the low current noise required for stable operation, nor will they prevent current spikes that result in immediate and permanent damage.
Thermally Regulate the Laser Temperature regulation is required to operate the laser for any amount of time. The temperature regulation apparatus should be rated to dissipate the maximum heat load that can be drawn by the laser. For our QF4050D2, QF4050D3, and QF4600D4 lasers, this value is 25 mW.
The bottom face of the D-mount package is machined flat to make proper thermal contact with a heat sink. Ideally, the heat sink will be actively regulated to ensure proper heat conduction. A Thermoelectric Cooler (TEC) is well suited for this task and can easily be incorporated into any standard PID controller.
A fan may serve to move the heat away from the TEC and prevent thermal runaway. However, the fan should not blow air on or at the laser itself. Water cooling methods may also be employed for temperature regulation. Do not use thermal grease with this package, as it can creep, eventually contaminating the laser facet. Pyrolytic graphite is an acceptable alternative to thermal grease for these packages.
For assistance in picking a suitable temperature controller for your application please contact Tech Support.
Carefully Make Electrical Connections When making electrical connections, care must be taken. For D-mount lasers, solder should never be used; wire bonding or probe connections are the only recommended methods.
Minimize Physical Handling As any interaction with the package carries the risk of contamination and damage, any movement of the laser should be planned in advance and carefully carried out. It is important to avoid mechanical shocks. Dropping the laser package from any height can cause the unit to permanently fail.
Click to Enlarge Two D-mount Fabry-Perot QCLs shown with a partial-reflection coating and solder on the front facet. The partial-reflectance coating is applied so that the laser meets specification, and the solder ensures the laser is mounted securely onto the D-mount package.
Appearance
In order to ensure that the finished lasers meet their target specifications, they are qualified by an automated test station before shipment. The test station measures the output spectrum, optical power, and L-I-V curve, all of which are included on a data sheet that ships with each serial-numbered laser. These measurements are also available below by clicking "Choose Item" and then clicking on the red Docs icon () that appears.
Each D-mount QCL has a high-reflectance (HR) coated back facet and a partial-reflectance (PR) coated front facet. Finished units will show solder, which attaches the submounted laser onto the D-mount. The darker region on the D-mounts does not impair the performance of the laser when it is operated within its specified parameters. All shipped units have been burned in and have passed our rigorous optical performance, reliability, and environmental testing.
Posted Comments:
No Comments Posted
The rows shaded green below denote single-frequency lasers.
The rows shaded green above denote single-frequency lasers.
4.05 µm Center Wavelength FP QCLs, D-Mount
Item #
Info
Center Wavelengtha
Powerb
Max Operating Currentb
Wavelength Tested
Longitudinal Mode
Spatial Mode
QF4050D2
4.05 µm (2469 cm-1) (Typ.)
800 mW (Typ.)
1300 mAc
Yes
Multimode
Single
QF4050D3
1200 mW (Typ.)
1800 mAc
Yes
Multimode
Single
These quantum cascade lasers exhibit broadband emission. The center wavelength is defined as a weighted average over all the modes. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number. If you need a wavelength that is not listed below, please request it by contacting Tech Support.
Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs Icon next to the serial number.
4.6 µm Center Wavelength FP QCLs, D-Mount
Item #
Info
Center Wavelengtha
Powerb
Max Operating Currentb
Wavelength Tested
Longitudinal Mode
Spatial Mode
QF4600D4
4.6 µm (2174 cm-1) (Typ.)
2500 mW (Min)
2500 mAc
Yes
Multimode
Single
This quantum cascade laser exhibits broadband emission. The center wavelength is defined as a weighted average over all the modes. Each device has different optical characteristics. To get the spectrum and output power of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number. If you need a wavelength that is not listed below, please request it by contacting Tech Support.
Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
Please note that the absolute maximum current is determined on a device-by-device basis. It is listed on the device's data sheet. To view, click "Choose Item" below, then click on the Docs Icon next to the serial number.