纳米粒子线性薄膜偏振片


  • UV, Visible, NIR, and IR Spectral Ranges
  • Unmounted and Mounted Versions
  • Extinction Ratios up to 100 000:1
  • Laser Damage Thresholds up to 25 W/cm2

Unmounted Linear
Polarizers

LPVIS100

(Ø25.0 mm)

LPUV050

(Ø12.5 mm)

LPUV050-MP2

(SM05 Compatible)

LPMIR100-MP2

(SM1 Compatible)

Mounted Linear
Polarizer in
RSP1X15 Indexed
Rotation Mount

Mounted Linear
Polarizers

Related Items


Please Wait
Linear Polarizer Selection Guide
Item # PrefixWavelength RangeExtinction Ratio GraphaLaser Damage Thresholdb
UnmountedMounted 
LPUV365 - 395 nm1 W/cm2
Continuous Blockc
5 W/cm2
Continuous Passc
10 W/cm2
Continuous Block
25 W/cm2
Continuous Pass
LPVISA480 - 550 nm
LPVISC510 - 800 nm
LPVIS550 nm - 1.5 µm
LPNIR650 nm - 2.0 µm
LPNIRB650 nm - 1.1 µm10 W/cm2
Continuous Blockd
25 W/cm2
Continuous Passd
LPNIRA1.0 - 3.0 µm
LPNIRC1.1 - 1.8 µm
LPMIR1.5 - 5.0 µm
  • 消光比(ER)是近完美线偏光的最大透过率与最小透过率的比值。当偏振片的轴和信号偏振方向平行时,透射达到最大值;偏振片旋转90°之后,透射达到最小值。
  • 上表中只给出了连续波激光损伤阈值。更多详情,请看损伤阈值标签。
  • LPNIR、LPVIS、LPVISC、LPVISA和LPUV都是由两片折射率匹配的肖特玻璃夹着一块线偏振片的未安装结构,以增加强度。
  • LPNIRA、LPNIRB、LPNIRC和LPMIR未安装线偏振片不是夹层结构,所以激光损伤阈值较高。

特性

  • 高消光比,高激光损伤阈值(见下方表格)
  • 四种偏振片尺寸
    • 型号前缀为LPUV、LPVISA、LPVISC、LPVIS、LPNIR和LPMIR:Ø12.5 mm或Ø25.0 mm
    • 型号前缀为LPNIRB和LPNIRC:Ø1/2英寸或Ø1英寸
  • 未安装或安装在SM螺纹外壳中
  • 前缀为LPNIRB和LPNIRC的型号具有平坦的光谱响应
  • 未安装版本有保护玻璃基底(LPNIRB、LPNIRA、LPNIRC和LPMIR除外)
  • 抗紫外辐射,耐化学腐蚀
  • 可以定制尺寸和波长;详情请联系技术支持techsupport-cn@thorlabs.com

这些纳米粒子线性薄膜偏振片通过将长椭球形纳米粒子嵌入硅酸钠玻璃中制备而成。除LPNIRA050、LPMIR050、LPNIRA100和LPMIR100之外,未安装的偏振片的边缘有两个黑点标记,表示透射轴。已安装的偏振片外壳上刻有两条白线表示偏振轴。

纳米粒子偏振片能够提供比传统聚合物偏振片出色的性能。虽然传统偏振片和纳米粒子偏振片都会吸收偏振方向垂直于透射轴的光,但与我们的经济型偏振片相比,纳米粒子偏振片的损伤阈值和工作温度范围更大。LPUV、LPVISA、LPVISC、LPVIS、LPNIR和LPMIR偏振片均具有非常高的消光比,但在可用波长范围内具有可变性。相比之下,LPNIRB和LPNIRC偏振片具有更高的透射率,消光比较低,在整个可用波长范围内相对平坦。要比较性能特征,请查看规格曲线标签。

Ø12.5 mm和Ø1/2英寸已安装的偏振片外壳具有SM05(0.535"-40)外螺纹,Ø25.0 mm和Ø1英寸已安装的偏振片外壳具有SM1(1.035"-40)外螺纹,方便集成到我们的SM螺纹组件中。此外,已安装的偏振片还可以通过我们的旋转调整架产品用于各种系统中,包括笼式系统透镜套筒

下方出售的未安装偏振片(LPNIRA、LPNIRB、LPNIRC和LPMIR除外)都是两片折射率匹配的肖特玻璃(B270)夹着一层薄薄的硅酸钠薄膜偏振片的结构,以提高强度。已安装的偏振片,以及LPNIRA、LPNIRB、LPNIRC和LPMIR未安装的偏振片没有分层,激光损伤阈值更高。它们只由厚度从0.20 mm到0.55 mm的硅酸钠薄膜偏振片构成;因此更易受损。但是它们还是可以通过标准的光学元件清洁方法和溶剂进行清洁。

Item # PrefixLPUVLPVISALPVISCLPVISLPNIRBLPNIRLPNIRALPNIRCLPMIR
Wavelength Range365 - 395 nm480 - 550 nm510 - 800 nm550 - 1500 nm650 - 1100 nm650 - 2000 nm1000 - 3000 nm1100 - 1800 nm1500 - 5000 nm
Extinction Ratiosa
> 100 000 : 1372 - 388 nm-530 - 640 nm600 - 1200 nm-850 - 1600 nm---
> 10 000 : 1369 - 390 nm480 - 550 nm520 - 740 nm550 - 1500 nm-750 - 1800 nm1200 - 3000 nm-2000 - 4500 nm
> 1000 : 1365 - 395 nm-510 - 800 nm-695 - 1100 nm650 - 2000 nm1000 - 3000 nm1100 - 1800 nm1500 - 5000 nm
> 200:1----650 - 695 nm----
General Specifications
Polarizer MaterialNanoparticles in Sodium-Silicate Glass
Substrate MaterialUnmountedSchott Glass B270NoneSchott Glass B270None
MountedNone
Optic DiameterØ12.5 mm (Ø0.49") or Ø25.0 mm (Ø0.98")Ø1/2" (Ø12.7 mm) or Ø1" (Ø25.4 mm)Ø12.5 mm (Ø0.49") or Ø25.0 mm (Ø0.98")Ø1/2" (Ø12.7 mm) or Ø1" (Ø25.4 mm)Ø12.5 mm (Ø0.49") or Ø25.0 mm (Ø0.98")
Optic Diameter Tolerance±0.2 mm (0.008")±0.2 mm (0.008")±0.2 mm (0.008")±0.2 mm (0.008")±0.2 mm (0.008")
Optic ThicknessUnmounted2.0 ± 0.2 mm0.55 ± 0.1 mm2.0 ± 0.2 mm250 ± 65 µm0.55 ± 0.1 mm200 ± 50 µm
Mounted220 ± 50 µm280 ± 50 µm280 ± 50 µm260 ± 50 µm0.55 ± 0.1 mm220 ± 50 µm250 ± 65 µm0.55 ± 0.1 mm200 ± 50 µm
Housing DiameterbØ12.5 mm or Ø1/2" Polarizers: Ø17.8 mm (Ø0.70") Ø25.0 mm or Ø1" Polarizers: Ø30.5 mm (Ø1.20")
Housing DepthbØ12.5 mm or Ø1/2" Polarizers: 10.4 mm Ø25.0 mm or Ø1" Polarizers: 11.4 mm
Clear ApertureUnmounted90% of Surface Area
MountedØ12.5 mm or Ø1/2" Polarizers: Ø10.9 mm (Ø0.43") Ø25.0 mm or Ø1" Polarizers: Ø22.9 mm (Ø0.90")
Wavefront DistortionUnmounted< λ/4 @ 633 nm< λ/4 @ 633 nm< λ/4 @ 633 nm< 3λ @ 633 nm< λ/4 @ 633 nm< 3λ @ 633 nm
Mounted3λ @ 633 nm3λ @ 633 nm
ParallelismUnmounted< 1 arcmin< 0.5 arcmin< 20 arcmin< 0.5 arcmin< 20 arcmin
Mounted< 20 arcmin
Surface QualityScratch-Dig: 40-20 (MIL-O-13830A)
Surface Imperfections: 5/2 x 0.04 per Ø10 mm acc. (ISO 10110-07)
Scratch-Dig: 40-20 (MIL-O-13830A)Scratch-Dig: 40-20 (MIL-O-13830A)
Surface Imperfections: 5/2 x 0.04 per Ø10 mm acc. (ISO 10110-07)
N/AScratch-Dig: 40-20 (MIL-O-13830A)N/A
Acceptance Anglec±20°
Laser Damage ThresholdCWUnmounted: 1 W/cm² Continuous Block, 5 W/cm² Continuous Pass
Mounted: 10 W/cm² Continuous Block, 25 W/cm² Continuous Pass
10 W/cm² Continuous Block 25 W/cm² Continuous PassUnmounted: 1 W/cm² Continuous Block, 5 W/cm² Continuous Pass
Mounted: 10 W/cm² Continuous Block, 25 W/cm² Continuous Pass
10 W/cm² Continuous Block 25 W/cm² Continuous Pass
Pulsed-0.006 J/cm2 (800 nm, 100 Hz, 36.4 fs, Ø189 µm) 0.1 J/cm2 (810 nm, 10 Hz, 7.2 ns, Ø0.216 mm)-
Operating TemperatureUnmounted-20 to +120 °C-30 to +250 °C-50 to +400 °C-30 to +250 °C-50 to +400 °C
Mounted-20 to +120 °C-20 to +120 °C-20 to +120 °C-20 to +120 °C-20 to +120 °C
MaintenanceClean with Standard Cleaning Solvents
  • 消光比(ER)是近完美线偏入射光的最大透过率与最小透过率之间的比值。当透射轴和入射偏振方向平行时,透射达到最大值;偏振片旋转90°之后,透射达到最小值。有关消光比与波长的曲线图,请看曲线标签。
  • 仅针对已安装的偏振片。
  • 接收角受到因菲涅耳反射产生的损耗的限制。

下面给出了光束垂直入射到偏振片上时,透射率测量值与波长的关系曲线(蓝线)以及消光比理论计算值(ER)与波长的关系曲线(红线)。可保证的消光比测量值请看规格标签。透射百分比是指线性偏振态(SOP)对准透过线偏振片的透射轴时,光通过偏振片的百分比。由于表面反射和内部吸收,这个值小于100%。消光比是SOP方向平行于透射轴与SOP方向垂直于透射轴的近完美线偏光光强之比。作为参考,最高品质的格兰激光方解石偏振器的典型消光比为1x106,而方解石偏振器的损坏阈值要更高。


Click to Enlarge

虚线表示指定线偏振片适用波长范围之外的区域,更多有关具体偏振片系列产品的信息,请看下方的曲线图。

Click to Enlarge

虚线表示指定线偏振片适用波长范围之外的区域,更多有关具体偏振片系列产品的信息,请看下方的曲线图。
LPUV Transmission and Extinction Ratio
Click to Enlarge

Click to Download LPUV Series Transmission Data
此类偏振片适用于365 - 395 nm的波长范围。
LPVISA Transmission and Extinction Ratio
Click to Enlarge

Click to Download LPVISA Series Transmission Data
此类偏振片适用于480 - 550 nm的波长范围。



LPVISC Transmission and Extinction Ratio
Click to Enlarge

Click to Download LPVISC Series Transmission Data
此类偏振片适用于510 - 800 nm的波长范围。

LPVIS Transmission and Extinction Ratio
Click to Enlarge

Click to Download LPVIS Series Transmission Data
此类偏振片适用于550 nm - 1.5 µm的波长范围。

LPNIRB Transmission and Extinction Ratio
Click to Enlarge

Click to Download LPNIRB Transmission Data
此类偏振片适用于650 nm - 1.1 µm的波长范围。

LPNIR Transmission and Extinction Ratio
Click to Enlarge

Click to Download LPNIR Transmission Data
此类偏振片适用于650 nm - 2.0 µm的波长范围。

LPNIRA Transmission and Extinction Ratio
Click to Enlarge

Click to Download LPNIRA Transmission Data
此类偏振片适用于1.0 - 3.0 µm的波长范围。
LPNIRC Transmission and Extinction Ratio
Click to Enlarge

Click to Download LPNIRC Transmission Data
此类偏振片适用于1.1 - 1.8 µm的波长范围。

LPMIR Transmission and Extinction Ratio
Click to Enlarge

Click to Download LPMIR Transmission Data
此类偏振片适用于1.5 - 5.0 µm的波长范围。

762473B5-84EE-49EB-8E93-375E0AA803FA

Damage Threshold Specifications
Item #
Prefix
Damage Threshold
CWPulsed
LPUVUnmounted Versions:
1 W/cm2 Continuous Block;
5 W/cm2 Continuous Pass

Mounted Versions:
10 W/cm2 Continuous Block;
25 W/cm2 Continuous Pass
-
LPVIS
LPVISA
LPVISC
LPNIR
LPNIRA10 W/cm2 Continuous Block;
25 W/cm2 Continuous Pass
-
LPMIR
LPNIRB10 W/cm2 Continuous Block;
25 W/cm2 Continuous Pass
0.006 J/cm2 (800 nm, 100 Hz, 36.4 fs, Ø189 µm)
0.1 J/cm2 (810 nm, 7.2 ns, 10 Hz, Ø0.216 mm)
LPNIRC10 W/cm2 Continuous Block;
25 W/cm2 Continuous Pass
-

Thorlabs纳米粒子线性薄膜偏振片的损伤阈值数据

右表为Thorlabs纳米粒子线性薄膜偏振片的规格。所有纳米粒子线性薄膜偏振片的损伤阈值规格是恒定的,与偏振片的尺寸无关。

 

激光诱导损伤阈值教

以下简要介绍如何测量激光诱导损伤阈值,以及如何根据损伤阈值规格确定光学元件是否适用于特定应用。在选择光学元件时,理解光学元件的激光诱导损伤阈值(LIDT)是很重要的。光学元件的LIDT很大程度上取决于您所使用的激光类型。连续波(CW)激光一般通过热效应(膜层或基底的吸收)引起损伤。脉冲激光通常在引起热损伤之前就会夺去光学元件晶格结构中的电子。请注意,这里提供的指南是以室温工作和全新光学元件为前提(即,符合划痕-麻点规格、表面无污染等)。由于光学元件表面上的灰尘或其它微粒会降低损伤阈值,因此我们建议保持光学元件表面清洁,且没有杂质污染。关于清洁光学元件的更多信息,请查看我们的光学元件清洁教程

测试方

Thorlabs根据ISO/DIS 11254和ISO 21254标准测试LIDT。

首先,我们将一束低功率/能量光束入射待测光学元件。光学元件的10个位置在激光光束下曝光一段时间(连续激光)或曝光若干个脉冲(特定的脉冲重频)。曝光后,用显微镜(放大率~100X)检测是否存在可见的损伤。记录损伤位置的个数以及对应的功率/能量。接下来,增大或者降低入射光的功率/能量,在光学元件的10个新位置进行曝光。重复以上过程,直到观察到损伤为止。这样,损伤阈值就是光学元件在没有损伤时能够承受的最高功率/能量。下面的直方图为一个BB1-E02反射镜的测试结果。

LIDT metallic mirror
上图为带保护层的铝膜反射镜的LIDT测试结果。在此测试中反射镜的损伤阈值为0.43 J/cm2 (1064 nm,脉宽10 ns,10 Hz,Ø1.000 mm)。

LIDT BB1-E02
Example Test Data
Fluence# of Tested LocationsLocations with DamageLocations Without Damage
1.50 J/cm210010
1.75 J/cm210010
2.00 J/cm210010
2.25 J/cm21019
3.00 J/cm21019
5.00 J/cm21091

根据测试结果,反射镜的损伤阈值为2.00 J/cm2 (532 nm,脉宽10 ns,10 Hz,Ø0.803 mm)。请注意,这些测试是在干净光学元件上进行的,因为杂质和污染物可能会明显减小元件损伤阈值。本测试结果仅代表某一种膜层,Thorlabs的损伤阈值规格会根据膜层不同而有所变化。

连续波和长脉冲激

当光学元件被连续波(CW)激光损伤时,通常是由于吸收激光能量造成表面融化或者光学膜层(增透膜)损伤[1]。分析LIDT时,脉宽大于1 µs的脉冲可以看作连续激光。

对于脉宽在1 ns和1 µs之间时,可能由于吸收或介电击穿产生激光诱导损伤,因此用户必须同时分析连续波和脉冲LIDT。吸收可能是由光学元件的固有属性或表面不规则引起的;只有满足或超过制造商提供的表面质量规格的光学元件,LIDT值才有效。尽管很多光学元件能够承受高功率连续波激光,但胶合(如消色差双合透镜)或高吸收(如中性密度滤光片)等光学元件的连续波损伤阈值则较低,这是因为胶合层或金属膜的吸收或散射会降低损伤阈值。

Linear Power Density Scaling

LIDT线性功率密度与脉宽和光斑大小的关系。从脉冲到连续激光,无论光斑大小,线性功率密度是恒定此曲线图[1]获得

Intensity Distribution

高脉冲重复频率(PRF)的脉冲激光和连续光束相似。但是,这很大程度上取决于吸收和热扩散等因素,因此没有可靠的方法确定高PRF激光是否会由于热效应损伤光学元件。对于高PRF的光束,其平均功率和峰值功率都必须与同等CW功率比较。此外,对于高度透明的材料,在PRF增加时,LIDT几乎没有或完全没有下降。

为了使用光学元件规定的连续波损伤阈值,有必要了解以下信息:

  1. 您的激光波长
  2. 光束直径(1/e2)
  3. 光束的近似强度轮廓(比如高斯分布)
  4. 光束的线性功率密度(总功率除以1/e2光束直径)

Thorlabs使用W/cm表达CW激光的LIDT值。这样,以线性功率密度给出的LIDT可用于任何光束直径;无需因为光斑大小改变而重新计算,请见右图所示。使用下面的公式计算平均线性功率密度。

以上计算公式假设是均匀的光束强度轮廓。现在,您必须考虑光束中的热点或其它非均匀强度轮廓,并粗略计算最大的功率密度。例如,高斯光的最大功率密度通常是均匀光束的两倍(如右下图)。

现在,将最大功率密度与光学元件规定的LIDT比较。如果光学元件的测试波长不等于您的工作波长,损伤阈值必须要适当缩放。根据经验,损伤阈值和波长具有线性关系。所以,当波长减小时,损伤阈值也会减小(比如,LIDT在1310 nm时的损伤阈值为10 W/cm,在655 nm时则减小为5 W/cm):

CW Wavelength Scaling

这个经验法则只提供大体的趋势,它不是LIDT和波长的定量分析。比如,对于连续光应用,损伤阈值与膜层和基底的吸收成良好的比例关系,而上述吸收不一定与波长成比例。尽管上述过程对于LIDT计算是较好的经验法则,如果工作波长不同于LIDT波长,请联系技术支持techsupport-cn@thorlabs.com。如果实际功率密度小于调整后的损伤阈值,那么光学元件应该能适用于您的应用。

请注意,我们在网上标定的损伤阈值与我们的测验结果之间存在一定的预留误差,这样就能适应不同批次产品间的差异。如有需要,我们可以提供单独的测试信息和测试证书。我们将使用类似的光学元件进行损伤分析(不会损坏客户的光学元件)。测试可能需要额外费用或交货时间。请联系技术支持techsupport-cn@thorlabs.com获取更多信息。

脉冲激光

如上所述,脉冲激光一般会对光学元件引入与连续波激光不同类型的损伤。脉冲激光通常不会通过热效应使光学元件产生损伤;而是通过产生能在材料中诱导介电击穿的强电场对其造成损坏。遗憾的是,要将光学元件的LIDT规格与您使用的激光作比较是十分困难的。脉冲激光损坏光学元件有多种机制,并且损坏程度取决于激光脉宽。下表中的高亮部分概括了我们规定的LIDT值对应的脉宽。

小于10-9 s的脉冲与我们规定的LIDT值对比时缺乏可靠性。在这种超短脉冲范围,有各种机制会占主导的损伤机制[2],比如多光子雪崩电离。相反,10-7 s到10-4 s之间的脉冲对光学元件的损伤是由介电击穿或热效应引起的。这意味着连续和脉冲激光的损伤阈值都必须与激光光束进行比较,从而确定光学元件是否适用于您的应用。

Pulse Durationt < 10-9 s10-9 < t < 10-7 s10-7 < t < 10-4 st > 10-4 s
Damage MechanismAvalanche IonizationDielectric BreakdownDielectric Breakdown or ThermalThermal
Relevant Damage SpecificationN/APulsedPulsed and CWCW

将特定脉冲激光下给定的LIDT与您使用的激光作对比时,需要了解以下信息:

Energy Density Scaling

LIDT能量密度与脉冲宽度和光斑大小的关系对于短脉冲,无论光斑大小,能量密度是恒定。此曲线图[1]获得

  1. 您的激光波长
  2. 您的光束能量密度(总能量除以1/e2面积)
  3. 您的激光脉宽
  4. 您的激光脉冲重复频率(prf)
  5. 您的激光的光束直径(1/e2)
  6. 光束的大致强度分布(如高斯分布)

您的光束能量密度需要以J/cm2计算。右图表明了为何能量密度是短脉冲光源表达LIDT的最佳量度。在这些条件下,以能量密度给出的LIDT与光斑尺寸无关;因此不需要因为光斑大小变化而重新调整LIDT值。计算过程假定光强分布是均匀的。您必须调整该能量密度来应对光束中的热点或其他非均匀强度分布,并且粗略计算最大能量密度。例如,高斯光的最大能量密度通常是1/e2光束的两倍。

现在将最大能量密度与光学元件给定的LIDT作比较。如果光学元件测试波长不等于您的工作波长,损伤阈值必须适当缩放[3]。根据经验,损伤阈值和波长比的平方根成比例。所以,当波长减小时,损伤阈值也会减小(比如,在1064 nm时的损伤阈值为1 J/m2,在532 nm时则减小为0.7 J/cm2):

Pulse Wavelength Scaling

现在您得到了根据波长调整的能量密度,您可以在接下来的步骤中使用该能量密度。

光束直径在比较损伤阈值时也是很重要的。虽然LIDT在以J/cm²表达时与光斑大小无关;但是大光束可能照亮更多缺陷这可能会导致更大激光损伤阈值的变化[4]。对于这里的数据,使用小于1 mm光束测量LIDT。当光束尺寸大于5 mm时LIDT(J/cm²)也将和光束直径有关,因为尺寸较大光束容易暴露更多的缺陷

现在,必须对脉宽进行补偿。脉宽越长,光学元件能承受越多的能量。对于1 ns至100 ns的脉宽,其关系可以近似为:

Pulse Length Scaling

使用该公式可以根据您的脉宽计算调整LIDT。如果所使用激光的最大能量密度小于调整后的LIDT最大能量密度,光学元件就适用于您的应用。请注意,该计算仅适用于10-9 s和10-7 s之间的脉冲激光。对于10-7 s和10-4 s之间的脉冲激光,您同时还需要考察是否满足连续波LIDT。

请注意,我们在网上标定的损伤阈值与我们的测验结果之间存在一定的预留误差,这样就能适应不同批次产品间的差异。如有需要,我们可以提供单独的测试信息和测试证书。请联系技术支持techsupport-cn@thorlabs.com获取更多信息。


[1] R. M. Wood, Optics and Laser Tech. 29, 517 (1997).
[2] Roger M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics Publishing, Philadelphia, PA, 2003).
[3] C. W. Carr et al., Phys. Rev. Lett. 91, 127402 (2003).
[4] N. Bloembergen, Appl. Opt. 12, 661 (1973).

为了介绍如何确定某一给定激光系统是否损伤光学元件,下面给出了激光诱导损伤阈值(LIDT)的许多计算实例。为了方便类似的计算,我们提供一个电子表格计算器,可点击右边的按钮下载。使用计算器时,首先在绿色框中输入光学元件指定的LIDT值以及您激光系统的相关参数。电子表格将计算CW和脉冲系统的线性功率密度以及脉冲系统的能量密度值。使用这些数值根据公认的缩放方法为光学元件计算已经调整、按比例缩放的LIDT值。计算器假定高斯光束轮廓,因此必须对其它光束形状引入校正系数(均匀度等等)。LIDT缩放根据经验确定;精度无法保证。注意,在某些光谱区域,光学元件或膜层对激光的吸收能力可能大大降低LIDT。这些LIDT值对于脉宽小于1 ns的超短脉冲无效。

 

Intensity Distribution
高斯光束分布的最大光强大约是均匀光束分布的两倍。

CW激光实例
假设一个CW激光系统在1319 nm时输出1/e2直径为10 mm的0.5 W高斯光束。直接用总功率除以光束直径得到光束的平均线性功率密度为0.5 W/cm:

CW Wavelength Scaling

然而,高斯光束的最大功率密度约为均匀光束的最大功率密度的两倍,如右图所示。因此,系统更准确的最大线性功率密度是1 W/cm。

AC127-030-C消色差双合透镜规定的CW LIDT为350 W/cm,在1550 nm测得。CW损伤阈值通常与激光源的波长直接成比例,因此得出调整的LIDT值:

CW Wavelength Scaling

调整的350 W/cm x (1319 nm / 1550 nm) = 298 W/cm的LIDT值显著高于激光系统的最大线性功率密度,因此系统使用这个双合透镜是安全的。

脉冲纳秒激光实例:不同脉宽的缩放
假设某脉冲Nd:YAG激光系统的三倍频输出355 nm、10 Hz、脉宽为2 ns,单脉冲能量为1 J,并且光束直径为1.9 cm(1/e2)的高斯光束。脉冲能量除以光束面积得到每个脉冲的平均能量密度:

Pulse Energy Density

如上所述,高斯光束的最大能量密度约为平均能量密度的两倍。因此,光束的最大能量密度为~0.7 J/cm2

将这个光束能量密度分别对比BB1-E01宽带介质膜反射镜规定的LIDT值1 J/cm2NB1-K08 Nd:YAG激光线反射镜的LIDT值3.5 J/cm2。这两个LIDT值都在355 nm下测量,使用脉宽10 ns、重频10 Hz的脉冲激光确定。因此,需要对系统的更短脉宽进行调整。如上一个标签中的描述,纳秒脉冲的LIDT值与激光脉宽的平方根成比例:

Pulse Length Scaling

使用这个调节因子,BB1-E01宽带反射镜的LIDT值变为0.45 J/cm2,Nd:YAG激光线反射镜的LIDT值变为1.6 J/cm2,将它们直接和光束的0.7 J/cm2最大能量密度比较 。宽带反射镜很可能受到激光损伤,但是特殊的激光线反射镜能够用于激光系统。

脉冲纳秒激光实例:不同波长的缩放
假设某脉冲激光系统以2.5 Hz发射10 ns脉冲,每个脉冲在1064 nm的能量为100 mJ,1/e2光束直径为16 mm,我们现在需要用中性密度滤光片进行衰减。对于高斯输出,使用这些规格计算最大能量密度为0.1 J/cm2

对于355 nm的10 ns脉冲,NDUV10A Ø25 mm、OD 1.0的反射型中性密度滤光片的损伤阈值是0.05 J/cm2,而对于532 nm的10 ns脉冲,类似的NE10A吸收型滤光片的损伤阈值是10 J/cm2。根据上一个标签中的描述,对于纳秒脉冲,光学元件的LIDT值与波长的平方根成比例:

Pulse Wavelength Scaling

根据这个比例,反射型滤光片调整后的LIDT值为0.08 J/cm2,吸收型滤光片为14 J/cm2。在这种情况下,为了防止光学损伤,吸收型滤光片是最佳选择。

脉冲微秒激光实例
考虑产生1 µs脉冲的激光系统,单脉冲能量为150 µJ,重频为50 kHz,这将导致5%相对高的占空比。系统处于CW与脉冲激光诱导损伤之间,可能通过任何一种机制引起光学元件损伤。因此,CW和脉冲LIDT值必须同时和激光系统的性质进行对比,以确保安全工作。

如果这个较长脉冲激光器发射980 nm、1/e2直径为12.7 mm的的高斯光束,那么激光输出的线性功率密度为5.9 W/cm,单脉冲能量密度为1.2 x 10-4 J/cm2。将这个值与WPQ10E-980聚合物零级四分之一波片的LIDT值对比,对于810 nm连续波为5 W/cm,对于810 nm的10 ns脉冲为5 J/cm2。与前面一样,光学元件的CW LIDT与激光波长呈线性比例,所以在980 nm时经过调整的CW值为6 W/cm。另一方面,脉冲LIDT与激光波长平方根和脉宽平方根成比例,所以对于1 µs脉冲在980 nm下经过调整的值为55 J/cm2 。光学元件的脉冲LIDT显著大于激光脉冲的能量密度,因此单脉冲不会损伤波片。然而,激光系统的平均线性功率密度较高,和高功率CW光束相似,可能会对光学元件造成热损伤。


Posted Comments:
user  (posted 2021-06-08 15:48:50.887)
Hi, I am wondering why you didn't specify the extinction ratio of > 100 000:1 for LPVISA in the table of extinction ratio bands? I would like to know which one (LPVISA and LPVISC) is better for 532-nm laser. Thanks.
MKiess  (posted 2021-06-11 09:14:59.0)
This is a response from Michael at Thorlabs. Thank you very much for your inquiry. The LPVISA has the better extinction ratio at 532nm. You can see the comparison very well in the Extinction Ratio Graph, which you can find in the Linear Polarizer Selection Guide table, in the Overview Tab. I have contacted you directly for further support.
Vladimir Makarov  (posted 2020-06-04 10:20:40.07)
Hello, The Solidworks 3D CAD model for this part is in German. Could you please fix this and make it in English. We are using this model in our equipment assembly 3D CAD, and the German is confusing.
MKiess  (posted 2020-06-10 06:20:03.0)
This is a response from Michael at Thorlabs. Thank you very much for your feedback. That's correct. We will adjust that immediately. Thank you very much for this information.
Angel Fernandez  (posted 2020-01-31 04:05:34.34)
Hi, What is the refraction index of the LPVISC100-MP2 polarizer at 633nm wavelength? Thank you in advance.
MKiess  (posted 2020-02-03 11:27:53.0)
This is a response from Michael at Thorlabs. Thank you very much for your inquiry. The refraction index of the LPVISC100-MP2 polarizer at 633nm is ~1.52. I have sent you contacted you directly to provide further details.
Seungeun Oh  (posted 2019-08-21 02:59:19.98)
Has anyone tried if these polarizers work for 2W, 700 - 1064 nm NIR pulse lasers of ~200 fsec pulse duration, 80 MHz repetition rate? The average irradiance is 0.4 W/mm2, and estimated peak irradiance is 40 kW/mm2.
MKiess  (posted 2019-08-22 11:47:41.0)
This is a response from Michael at Thorlabs. Thank you very much for your inquiry. We once tested an LPNIRA100-MP2 with a 150fs pulsed laser at a wavelength of 2200nm with an average power density of 0.16W/mm^2. The repetition rate was 82Hz. The filter did not withstand this laser. Therefore the filter will not withstand a laser with the specifications described by you.
Petter Westbergh  (posted 2019-05-16 11:00:45.26)
How does the polarizer's transmission axis align with the marks on the side of the polarizer?
YLohia  (posted 2019-05-16 02:52:43.0)
The polarizer's transmission axis is indicated by two black marks on the edge of every unmounted polarizer except the LPNIRA050, LPMIR050, LPNIRA100, and LPMIR100. On the mounted polarizers, the polarization axis is indicated by engraved white lines on the housing.
adarshjain  (posted 2018-08-29 03:22:18.73)
Hi, We want to procure LPNIR100-MP2 polarizer. Our pulsed laser o/p requirements is as follows; (a) Pavg: 100mW (b) repetition rate: 10 MHz (c) Pulse duration: 10ns As laser damage threshold is written as 25W/cm2, can we use it for our application? Please reply on urgent basis.
nreusch  (posted 2018-09-06 04:53:34.0)
This is a response from Nicola at Thorlabs. Thank you for your inquiry. In order to determine the intensity of your laser beam, I need to know the beam diameter. Would you like to use it in pass orientation only? I will contact you directly to discuss this in more detail.
ivan.sytcevich  (posted 2018-05-07 10:48:34.937)
Hello, I was wondering if you make custom sized thin film polarizers. I need two rectangular polarizers with dimensions of 8 x3.5 mm (visible - NIR range) in order to use them with the SLM for amplitude modulation.
swick  (posted 2018-05-15 03:49:11.0)
This is a response from Sebastian at Thorlabs. Thank you for the inquiry. We can offer the Nanoparticle Film Polarizer with customized dimensions. I contacted you directly.
ahackler  (posted 2017-06-28 10:32:28.59)
I am slightly confused by how you explain the CW damage threshold as some of the terms aren't defined. My question is: I have a 488nm CW laser operating at 20mW with a beam diameter of 0.7 mm, would the film polarizers survive?
wskopalik  (posted 2017-06-29 04:28:54.0)
This is a response from Wolfgang at Thorlabs. Thank you very much for your inquiry. There are two damage threshold values specified for these polarizers. This is because the damage threshold depends on how the polarisation of the incoming light is oriented with regards to the polarizer. If the light is oriented so it is blocked by the polarizer, the light will be absorbed in the polarizer. This generates heat and can damage the polarizer if the power of the light is too high. In pass direction much less absorption takes place, therefore the applied power can be higher. In your case the power density is about 5.2 W/cm2. This is too much for the LPVISA050 even in pass direction. So the polarizer would be damaged. An alternative would be the mounted version LPVISA050-MP2 which has the same extinction ratio but can handle higher powers. This is because the mounted version doesn't have lamination layers. I will contact you directly to provide further assistance.
kko  (posted 2017-06-07 09:48:56.33)
Hello, I want to use the LPVIS100. Is there any evaluation about the homogeneity of the ER over the surface ? The guarantied ER at specific wavelength is several orders below the theoretical calculated. Is there a knowledge about the variance to be expected ? greetings martin
swick  (posted 2017-06-14 03:26:10.0)
This is a response from Sebastian at Thorlabs. Thank you for the inquiry. The fluctuation of the ER at the Nanoparticle Linear Film Polarizer over the clear aperture is very small. I have contacted you directly to provide assistance.
zhiheng  (posted 2015-10-27 23:43:34.93)
Hi there, I have a couple of LPVISB050-MP2 polarizers in my lab. Over the course of a couple of months, the polarizers develop a discoloration that is accompanied by a dramatic decrease in the extinction ratio (<10:1), making them unusable. This is even though the polarizers are used mostly with their polarization axes aligned with that of the incident laser beam. The incident laser beam has the following parameters: ~6 mW average power, 1 kHz pulse repetition rate, <10 fs pulse duration, 5 mm beam diameter (1/e^2), 550 - 720 nm wavelength. What could be causing the polarizers to be damaged? I would like to use these polarizers as much as possible because their thin substrates make them compatible with ultrashort pulses. Any advice that you can provide would be greatly appreciated. Thank you!
besembeson  (posted 2015-10-28 05:39:46.0)
Response from Bweh at Thorlabs USA: Though your average power is low, with such ultra-short pulses, the dominant damage mechanism is avalanche ionization. It is not clear however if the discoloration is random on the surface or only around areas used with the beam. I will contact you to clarify this further.
elijah.dale  (posted 2015-03-06 13:19:03.85)
What is the index of refraction of the polarizer (LPNIR050) at a wavelength of 1.55 um?
shallwig  (posted 2015-03-09 10:29:48.0)
This is a response from Stefan at Thorlabs. Thank you very much for your inquiry. The LPNIR050 has the same optical properties as B270 glass but unfortunately we do not have specific data for the refractive index at 1550nm. I will contact you directly to discuss your application in more detail.
ysu  (posted 2014-08-22 17:03:27.62)
Does the incident angle affect the extinction ratio? Can a diverging beam be polarized by this thin film polarizer?
shallwig  (posted 2014-08-25 06:05:59.0)
This is a response from Stefan at Thorlabs. Thank you very much for your inquiry. The incident angle affects the extinction ratio but within specified +/-20° acceptance angle the specifications of the extinction ratio are valid. In general it is possible to polarize a divergent beam but the single beams which come from different incident angles may have different extinction ratios.I will contact you directly to discuss your application in detail.
user  (posted 2014-06-08 15:27:13.417)
Is it possible to have LPNIR100 with AR coating? The AR coating should be optimized for NIR (900-1700nm), but should have effect at 500-900nm to.
jlow  (posted 2014-06-12 01:54:00.0)
Response from Jeremy at Thorlabs: We are able to offer LPNIR100 with an AR coating. However, a broadband coating from 500-1700 will be difficult to achieve with low reflectivity. Since you did not leave any contact information, can you contact your local Tech Support office to discuss about your requirements for the AR coating please?
branderson  (posted 2013-12-13 11:47:54.463)
I am slightly confused by how you explain the CW damage threshold as some of the terms aren't defined. My question is: I have a 532nm CW laser operating at 10W with a beam diameter of 2.25 mm, would the film polarizers survive? or do I need to go with a Glan-Taylor?
jlow  (posted 2013-12-19 04:18:35.0)
Response from Jeremy at Thorlabs: The continuous block means that the polarization of a CW source is perpendicular to the polarization axis of the polarizer. Continuous pass means that the polarization of a CW source is in-line with the polarization axis of the polarizer. These nanoparticle polarizers would not be suitable for your 10W beam. I would recommend the glan-laser calcite polarizer instead which can be found at http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=815.
inter99  (posted 2013-10-21 09:30:18.65)
Is it possible to buy LPVIS(50 or 100) with no substrate material? Previously, I purchased a polarizer without substrate. Thank you.
tschalk  (posted 2013-10-21 09:16:00.0)
This is a response from Thomas at Thorlabs. Thank you very much for your inquiry. We can offer the LPVIS without substrate material. I will contact you directly with more detailed information.
christian.b.schmidt  (posted 2013-07-10 07:25:24.22)
Do you have any information about the beam displacement? (Polarizator turning from 0-45-90-180 deg?)
jvigroux  (posted 2013-07-23 10:56:00.0)
a response form Julien at Thorlabs: thank you for your inquiry! the maximum beam displacement we specify is 20 arc min.
jvigroux  (posted 2012-12-24 03:11:00.0)
A response from Julien at Thorlabs: Thank you for your interest in our products! The transmission of the polarizers is wavelength dependent and can be seen under the tab "Graphs" of their product page. Concerning the waveplates, we specify a reflectance of less than 0.5% per surface (0.25% for the multi-order waveplates) and the absorption is that of fused silica so that a transmission >97% should normally be achieved.
77071191  (posted 2012-12-24 01:44:58.023)
I want to know the transimission of the plorizer LPVIS050 and 1/4 waveplate,could you help me ?
bdada  (posted 2012-06-05 19:34:00.0)
Response from Buki at Thorlabs to ariyad2: Thank you for your feedback. We are reviewing your request and will contact you with more information shortly.
hariyad2  (posted 2012-05-31 05:45:26.0)
Do you have Calibrated Linear Polarizer (at 0 and 45 deg oriented) to sell ? If yes, how does the price ? Thanks Hary, Finland
bdada  (posted 2012-02-08 20:26:00.0)
Response from Buki at Thorlabs: The acceptance angle of the polarizer is +/- 20 degrees, due to losses from Fresnel reflections. This information is included in the "Specs" tab on the web page. Please contact TechSupport@thorlabs.com if you have any questions.
user  (posted 2012-01-31 01:43:46.0)
Is the polarizer dependent on AOI?
bdada  (posted 2011-07-26 20:48:00.0)
Response from Buki at Thorlabs: We don’t have the test data for your specific laser pulse width. The damage threshold for the LPNIR050 is 3 mJ/cm^2 at 1064 nm with 6 ns pulse width. Please contact TechSupport@thorlabs.com if you have additional questions or to discuss the specifications of your laser so we can determine if the LPNIR polarizer is suitable for your application.
Mikhail.Levin  (posted 2011-07-26 14:49:02.0)
Please inform about the Laser damage Threshold for LPNIR polarizer in the case of 1064 short pulse laser (pulse ~1 psec)
jvigroux  (posted 2011-06-03 10:21:00.0)
A response from Julien at Thorlabs: The difference between the specification and the graph arises from the fact that the specified ER concerns the whole wavelength range and is thus a lower limit. The graph data on the other hand corresponds to a typical data and is therefore not to be considered as an absolute specification. I will contact you directly in order to see which solution would be the most adapted for your application.
federica.beduini  (posted 2011-06-02 12:20:58.0)
In the graph section one can see that the LPVIS series can reach an extinction ratio of 10^8 for 800 nm, but in the specs you guarantee only >10^5 extinction ratio. Is it possible to order custom product which satisfies the 10^8 specification? I will work with a wavelength of 795 nm. Thanks!
tor  (posted 2010-12-09 10:04:18.0)
Response from Tor at Thorlabs to Dimitri: Thank you for your interest in our Nanoparticle Linear Film Polarizers. While these are not AR-coated, we may be able to offer AR-coated versions as a custom. I will contact you shortly to discuss your exact needs.
Dimitri.Mawet  (posted 2010-12-08 16:45:07.0)
Are there AR coatings on any of these polarizers, and if not, could you apply one ? If there is one, Id be interested in seeing the reflectance curves. Thanks.
julien  (posted 2010-11-30 16:26:36.0)
A response from Julien At Thorlabs: Dear Mike, we can offer custom sizes for the polarizers, both for small and large quantities. the LDT cannot be increased as the LPMIR is not laminated, in contrary to the other polarizers (hence the already higher damage threshold). However this value is valid only for CW lasers and will strongly vary when a pulsed laser source is used. I will contact you directly to further discuss your application and the possible use of our polarizers.
mburda  (posted 2010-11-30 21:44:02.0)
Hello, I have some questions about your LPMIR Polarizers. Are you able to make these at custom sizes? We would only be ordering a few at a time for design phase, but potentially hundreds-thousands when in production. For the MIR version, with a LDT of 10W/cm^2 block, is there a high power option? I ask because I saw in your discussion that there is a version with no adhesive. This would be very helpful to get a response to these questions very soon. We are in the process of designing and doing a lot of quoting which this would be very important for us. Could you give me a rough quote on quantities 5, 20, 50,100, 500 of the LPMIR, but with a 5mm diameter? For now I am going to place an order for a few pieces for design testing. Thank you for your time, I hope to hear from you as soon as possible. Mike
tor  (posted 2010-11-10 11:28:05.0)
Response from Tor at Thorlabs to luis.dussan: Thank you for your interest in our products. We are working on testing damage thresholds for many of our optics. We currently have a fluence damage threshold of 3 mJ/cm^2, 6 ns, 1064 nm given for the LPNIR050. I will contact you to obtain more information on your application to determine whether these polarizers are suitable for you.
luis.dussan  (posted 2010-11-08 21:29:50.0)
re Nanoparticle Linear Film Polarizers what is the Fluence DT for 1550nm 10ns 20Hz 100-400um diameter beam. Thanks
Thorlabs  (posted 2010-10-20 12:00:23.0)
Response from Javier at Thorlabs to Baohua.Niu: the refractive index is determined not only by the glass substrate, but by the particles used, as well. The values are as follows: At 1064 nm: 1.5120 At 1340 nm: 1.5900
Baohua.Niu  (posted 2010-10-20 01:12:21.0)
Can some one from the technical support department tell me whats the refraction index of the LPNIR100 polarizer at 1064nm and 1340nm wavelength? Is it just the refraction index of the glass substrate or something else? Thanks, Baohua.Niu@intel.com
julien  (posted 2010-10-05 12:54:20.0)
a Response from Julien at Thorlabs: The thin film polarizer is sandwiched between two glass plates that are glued together. The glue itself is not UHV compatible. We can also offer unlaminated polarizers that do not use any glue. As a result, there should be no outgasing problem for UHV applications. I will contact you directly to further discuss your application and see which type of polarizer would be best for your application.
badgie  (posted 2010-10-04 16:23:40.0)
Can you comment on the UHV compatibility of the unmounted polarizers? Thanks
Thorlabs  (posted 2010-08-25 11:16:42.0)
Response from Javier at Thorlabs to lawrence.berg: Thank you for your feedback. The correct specifications for damage threshold of these linear polarizers are those on the web (1 W/cm^2 block, 5 W/cm^2 pass). This is on our catalog corrections list and we will update the catalog pdf on the web.
lawrence.berg  (posted 2010-08-25 09:18:52.0)
Damage threshold on the LPNIR series. Web page states 1w/cm2 block, 5w/cm2 pass. The catalog page states 10W/cm2 block, 25W/cm2 pass. Which is it? The difference is crucial to to me. Thanks.
Thorlabs  (posted 2010-07-21 08:38:02.0)
Response from Javier at Thorlabs to lunxus.inc: Thank you for your feedback. The current lead time for the LPVIS050-MP is one week.
lynxus.inc  (posted 2010-07-20 15:43:17.0)
Please inform asap the Lead Time for this product. Thanks Abrao zatz LynxUS Inc.
klee  (posted 2009-11-12 11:08:24.0)
A response from Ken at Thorlabs to physics_nt: These conditions can be critical. We would thus recommend going with a special non-laminated version because it does not contain glue. If you would like to get a quotation for this, please send your full contact information to techsupport@thorlabs.com and also confirm the size that you need.
physics_nt  (posted 2009-11-10 13:44:15.0)
In response to Ken: 800nm peak, 10 nm bandwidth, ~6-8 mm diameter, 500 uJ pulse energy, 200 fs, 1 kHz. Typically, the polarizer would see about 100 uJ.
klee  (posted 2009-11-10 10:27:59.0)
A response from Ken at Thorlabs to physics_nt: A good guideline is 1MW/cm² pulse peak power. We will be happy to check if the polarizer is suitable for your laser if you can provide wavelength, beam diameter, peak power, pulse length, and repetition rate.
physics_nt  (posted 2009-11-06 16:15:24.0)
Is there any information available about pulsed laser damage threshold?
klee  (posted 2009-09-04 11:36:04.0)
A response from Ken at Thorlabs to bdeng: The transmittance should not have any unit. Thank you for pointing out the error. We will correct it ASAP.
bdeng  (posted 2009-09-03 16:27:01.0)
Why is the very important parameter, transmittance, has a unit of A/W in the plots?
apalmentieri  (posted 2009-08-06 16:56:19.0)
A response from Adam at Thorlabs: The best blocking you can achieve with these polarizers when using 532nm light is .01% transmission. This can be achieved using the LPVISA polarizers. When we quote an ER of 1:100,000 at 330nm, that means that when polarizers are crossed each polarization will transmit with a transmission of .001%.
ogersmith  (posted 2009-08-05 12:51:20.0)
I am interested in achieving high blocking from crossed polarizers at 532 nm. What can be achieved in Tr Vs Ext at this wavelength? and when quote an ER of 100,000 at 330nm say, what would that imply for a cross polarizer setup? Thank you, Roger Smith
apalmentieri  (posted 2009-06-15 11:00:28.0)
A response from Adam at Thorlabs: The working angle for this polarizer is normal incidence. The light transmitted from this polarizer, would be linear polarized light. If you have further questions, please let us know.
hongchang.wang  (posted 2009-06-14 21:55:01.0)
I ordered one linear polariser LPVISB050 last week. I want to know whether the working angle is normal to the light? If not, whats the brewster angle of the polariser? By the way, whether we use the transmission mode to get the polaised light? Thanks for your kind reply.
user  (posted 2008-06-17 09:48:38.0)
Jorg-uwe, In regards to your request, we do not offer too much along the lines of polarizing beam splitter cubes. Currently, we only offer a 3mm polarizing beamsplitter cube that works for 1525-1610nm: http://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=739&pn=PBS3&CFID=17605037&CFTOKEN=33382678 In the future we plan to offer larger versions a polarizing beam splitter cubes that work for various wavelength ranges. I noticed that you are looking for a large cube(~4”) that works for 2-2.4um, but you also need it to work for .500um(~20%). What size do you need? What type of AOI are you looking for? How many do you need? I think the current sizes that we are considering are 1-2” cubes. The AOI for the cubes would be normal incidence. As I state previously, our larger polarizing beamsplitter cubes have not yet been released. Please let me know what you need. After I get this information, I will check with our optics division to determine if there is anything we can provide.
jpott  (posted 2008-05-28 01:46:36.0)
>Dear Sir, or Madam, >> we have a need for polarizing beam splitters, > working at 2-2.4microns. I am about to design a specific requirement > document, but at the beginning I would like to understand what is > possible in general terms. >>Please reply to this request if your company has experience in the >following area of specifications: >The beamsplitter should be broad-band transmitting one linear >polarization direction, and reflecting the orthogonal direction. >What T/R values are possible (ROM), if optimized for 2.0-2.4micron, and >high polarization accuracy / extinction ratios (e.g. 0.1%) There is no need for longer >wavelengths, but shorter wavelengths down to 0.5um should be >transmitted a decent fraction (> 20%). >Are there size limits for these optics, is a 4in diameter conceivable? AOI can be matched to the solution (cube? plate?), T/R wavefront error should be >Looking forward to your input >>jorg-uwe pott

偏振片选择指南

Thorlabs提供多种类型的偏振片,包括线栅偏振片、薄膜偏振片、方解石偏振片、alpha-BBO偏振片、金红石偏振片和分光偏振片。总体而言,我们的线栅偏振片提供的光谱覆盖范围从可见光到远红外起始段。纳米颗粒线性薄膜偏振片的消光比高达100000:1。另外,其它的薄膜偏振片为可见到近红外范围的应用提供更经济实惠的解决方案。紧接着,分光偏振片允许用于反射光束,同时用于偏振性更好的透射光束。最后,我们的Alpha-BBO(紫外)、方解石(可见光到近红外)、金红石(近红外到中红外)以及钒酸钇(YVO4)(近红外到中红外)偏振片在各自的波长范围内的消光比都可达100000:1。

需要查看偏振片的类型、波长范围、消光比、透过率和可选尺寸,请点击下面相应行中的More [+]按钮。

线栅偏振片
薄膜偏振片
分光偏振片
alpha-BBO偏振片
方解石偏振片
石英偏振片
氟化镁偏振片
钒酸钇(YVO4)偏振片
金红石偏振片
  • 点击该列中的曲线图标查看相应偏振片的透过率曲线。每种曲线代表一个基底样品或者一轮镀膜,因此数据不做保证。
  • 安装在指示有偏振方向的保护外壳、无螺纹圆环或圆柱体中。
  • 可选未安装或安装在指示有偏振方向的SM05螺纹(0.535"-40)安装座内。
  • 可选未安装或安装在指示有偏振方向的SM1螺纹(1.035"-40)安装座内。
  • PBS519: 平均TP:TS > 1000:1
  • 可选未安装或安装在兼容笼式系统的立方中。
  • 方解石的350 nm附近的透过率一般约为75%(请见透过率一栏)。
  • 可选未安装或者安装在无螺纹的Ø1/2英寸外壳中。
  • 方解石的透过率曲线在线性偏振光的偏振方向与偏振镜外壳上的刻线对准时有效。
  • 1064 nm V型镀膜对应于产品型号中的-C26后缀。
  • 可选未安装或安装在指示有偏振方向的保护盒或者无螺纹圆柱体中。

线偏振片,Ø12.5 mm,未安装

Item #Extinction RatioaTransmission
and ER Graph
Laser Damage
Threshold
Thickness
(T)
Clear
Aperture
> 1000:1> 10 000:1> 100 000:1
LPUV050365 - 395 nm369 - 390 nm372 - 388 nm1 W/cm² Continuous Block
5 W/cm² Continuous Pass
2.0 ± 0.2 mmØ11.86 mm
(Ø0.47")
LPVISA050-480 - 550 nm-
LPVISC050510 - 800 nm520 - 740 nm530 - 640 nm
LPVIS050-550 - 1500 nm600 - 1200 nm
LPNIR050650 - 2000 nm750 - 1800 nm850 - 1600 nm
LPNIRA0501000 - 3000 nm1200 - 3000 nm-10 W/cm² Continuous Block
25 W/cm² Continuous Pass
250 ± 65 µm
LPMIR0501500 - 5000 nm2000 - 4500 nm-200 ± 50 µm
  • 消光比(ER)是近完美线偏振信号沿偏振片轴方向的最大透过率与偏振片旋转90°之后的最小透过率的比。这些偏振片的消光比在整个工作带宽上最少为1000:1。在特定波长范围内消光比为>10,000:1或者>100,000:1(详情请查看曲线标签)。
Ø12.5 mm Unmounted Linear Polarizer
+1 数量 文档 产品型号 - 公英制通用 单价 现货 / 发货日
LPUV050 Support Documentation
LPUV050线偏振片,Ø12.5 mm,未安装,365 - 395 nm
¥2,538.69
2 Weeks
LPVISA050 Support Documentation
LPVISA050线偏振片,Ø12.5 mm,未安装,480 - 550 nm
¥3,048.29
2 Weeks
LPVISC050 Support Documentation
LPVISC050线偏振片,Ø12.5 mm,未安装,510 - 800 nm
¥3,048.29
Today
LPVIS050 Support Documentation
LPVIS050线偏振片,Ø12.5 mm,未安装,550 - 1500 nm
¥3,227.68
Today
LPNIR050 Support Documentation
LPNIR050线偏振片,Ø12.5 mm,未安装,650 - 2000 nm
¥3,321.96
Today
LPNIRA050 Support Documentation
LPNIRA050线偏振片,Ø12.5 mm,未安装,1000 - 3000 nm
¥4,558.30
2 Weeks
LPMIR050 Support Documentation
LPMIR050线偏振片,Ø12.5 mm,未安装,1500 - 5000 nm
¥5,388.83
2 Weeks

线偏振片,Ø1/2英寸,未安装

Item #Extinction RatioaTransmission
and ER Graph
Laser Damage ThresholdThickness
(T)
Clear
Aperture
> 200:1> 1000:1CWPulsed
LPNIRB050650 - 695 nm695 - 1100 nm10 W/cm2
Continuous Block
25 W/cm2
Continuous Pass
0.006 J/cm2 (800 nm, 100 Hz,
36.4 fs, Ø189 µm)
0.1 J/cm2 (810 nm, 7.2 ns,
10 Hz, Ø0.216 mm)
0.55 ± 0.1 mmØ11.86 mm
(Ø0.47")
LPNIRC050-1100 - 1800 nm-
  • 消光比(ER)是近完美线偏振信号沿偏振片轴方向的最大透过率与偏振片旋转90°之后的最小透过率的比。这些偏振片的消光比在整个工作带宽上至少为200:1。在特定波长范围内消光比>1000:1(详情请看曲线标签)。
Ø1/2
+1 数量 文档 产品型号 - 公英制通用 单价 现货 / 发货日
LPNIRB050 Support Documentation
LPNIRB050线偏振片,Ø1/2英寸,未安装,650 - 1100 nm
¥2,136.73
Today
LPNIRC050 Support Documentation
LPNIRC050线偏振片,Ø1/2英寸,未安装,1100 - 1800 nm
¥2,258.83
Lead Time

线偏振片,Ø12.5 mm,已安装,SM05螺纹外壳

Item #Extinction RatioaTransmission
and ER Graph
Laser Damage
Threshold
Optic
Thickness (T)
Clear
Aperture
> 1000:1> 10 000:1> 100 000:1
LPUV050-MP2365 - 395 nm369 - 390 nm372 - 388 nm10 W/cm² Continuous Block
25 W/cm² Continuous Pass
220 ± 50 µmØ10.9 mm
(Ø0.43")
LPVISA050-MP2-480 - 550 nm-280 ± 50 µm
LPVISC050-MP2510 - 800 nm520 - 740 nm530 - 640 nm200 ± 50 µm
LPVIS050-MP2-550 - 1500 nm600 - 1200 nm260 ± 50 µm
LPNIR050-MP2650 - 2000 nm750 - 1800 nm850 - 1600 nm220 ± 50 µm
LPNIRA050-MP21000 - 3000 nm1200 - 3000 nm-250 ± 65 µm
LPMIR050-MP21500 - 5000 nm2000 - 4500 nm-200 ± 50 µm
  • 消光比(ER)是近完美线偏振信号沿偏振片轴方向的最大透过率与偏振片旋转90°之后的最小透过率的比。这些偏振片的消光比在整个工作带宽上最少为1000:1。在特定波长范围内消光比为>10,000:1或者>100,000:1(详情请查看曲线标签)。
+1 数量 文档 产品型号 - 公英制通用 单价 现货 / 发货日
LPUV050-MP2 Support Documentation
LPUV050-MP2线偏振片,Ø12.5 mm,SM05螺纹外壳,365 - 395 nm
¥3,444.67
2 Weeks
LPVISA050-MP2 Support Documentation
LPVISA050-MP2线偏振片,Ø12.5 mm,SM05螺纹外壳,480 - 550 nm
¥3,444.67
Today
LPVISC050-MP2 Support Documentation
LPVISC050-MP2线偏振片,Ø12.5 mm,SM05螺纹外壳,510 - 800 nm
¥3,444.67
Today
LPVIS050-MP2 Support Documentation
LPVIS050-MP2线偏振片,Ø12.5 mm,SM05螺纹外壳,550 - 1500 nm
¥3,709.01
Today
LPNIR050-MP2 Support Documentation
LPNIR050-MP2线偏振片,Ø12.5 mm,SM05螺纹外壳,650 - 2000 nm
¥3,897.74
Today
LPNIRA050-MP2 Support Documentation
LPNIRA050-MP2线偏振片,Ø12.5 mm,SM05螺纹外壳,1000 - 3000 nm
¥5,134.08
2 Weeks
LPMIR050-MP2 Support Documentation
LPMIR050-MP2线偏振片,Ø12.5 mm,SM05螺纹外壳,1500 - 5000 nm
¥6,379.83
2 Weeks

线偏振片,Ø1/2英寸,已安装,SM05螺纹外壳

Item #Extinction RatioaTransmission
and ER Graph
Laser Damage ThresholdOptic
Thickness (T)
Clear
Aperture
> 200:1> 1000:1CWPulsed
LPNIRB050-MP2650 - 695 nm695 - 1100 nm10 W/cm2
Continuous Block
25 W/cm2
Continuous Pass
0.006 J/cm2 (800 nm, 100 Hz,
36.4 fs, Ø189 µm)
0.1 J/cm2 (810 nm, 7.2 ns,
10 Hz, Ø0.216 mm)
0.55 ± 0.1 mmØ10.9 mm
(Ø0.43")
LPNIRC050-MP2-1100 - 1800 nm-
  • 消光比(ER)是近完美线偏振信号沿偏振片轴方向的最大透过率与偏振片旋转90°之后的最小透过率的比。这些偏振片的消光比在整个工作带宽上最少为200:1。在特定波长范围内消光比为>1000:1(详情请看曲线标签)。

 

+1 数量 文档 产品型号 - 公英制通用 单价 现货 / 发货日
LPNIRB050-MP2 Support Documentation
LPNIRB050-MP2线偏振片,Ø1/2英寸,SM05螺纹外壳,650 - 1100 nm
¥2,319.88
Today
LPNIRC050-MP2 Support Documentation
LPNIRC050-MP2线偏振片,Ø1/2英寸,SM05螺纹外壳,1100 - 1800 nm
¥2,405.35
Today

线偏振片,Ø25.0 mm,未安装

Item #Extinction RatioaTransmission
and ER Graph
Laser Damage
Threshold
Thickness
(T)
Clear
Aperture
> 1000:1> 10 000:1> 100 000:1
LPUV100365 - 395 nm369 - 390 nm372 - 388 nm1 W/cm² Continuous Block
5 W/cm² Continuous Pass
2.0 ± 0.2 mmØ24.37 mm
(Ø0.96")
LPVISA100-480 - 550 nm-
LPVISC100510 - 800 nm520 - 740 nm530 - 640 nm
LPVIS100-550 - 1500 nm600 - 1200 nm
LPNIR100650 - 2000 nm750 - 1800 nm850 - 1600 nm
LPNIRA1001000 - 3000 nm1200 - 3000 nm-10 W/cm² Continuous Block
25 W/cm² Continuous Pass
250 ± 65 µm
LPMIR1001500 - 5000 nm2000 - 4500 nm-200 ± 50 µm
  • 消光比(ER)是近完美线偏振信号沿偏振片轴方向的最大透过率与偏振片旋转90°之后的最小透过率的比。这些偏振片的消光比在整个工作带宽上最少为1000:1。在特定波长范围内消光比为>10,000:1或者>100,000:1(详情请查看曲线标签)。
Ø25.0 mm Unmounted Linear Polarizer
+1 数量 文档 产品型号 - 公英制通用 单价 现货 / 发货日
LPUV100 Support Documentation
LPUV100线偏振片,Ø25.0 mm,未安装,365 - 395 nm
¥7,078.15
Today
LPVISA100 Support Documentation
LPVISA100线偏振片,Ø25.0 mm,未安装,480 - 550 nm
¥8,012.47
2 Weeks
LPVISC100 Support Documentation
LPVISC100线偏振片,Ø25.0 mm,未安装,510 - 800 nm
¥8,012.47
2 Weeks
LPVIS100 Support Documentation
LPVIS100线偏振片,Ø25.0 mm,未安装,550 - 1500 nm
¥8,172.85
Today
LPNIR100 Support Documentation
LPNIR100线偏振片,Ø25.0 mm,未安装,650 - 2000 nm
¥8,172.85
Today
LPNIRA100 Support Documentation
LPNIRA100线偏振片,Ø25.0 mm,未安装,1000 - 3000 nm
¥10,909.70
2 Weeks
LPMIR100 Support Documentation
LPMIR100线偏振片,Ø25.0 mm,未安装,1500 - 5000 nm
¥13,788.26
2 Weeks

线偏振片,Ø1英寸,未安装

 

Item #

Extinction RatioaTransmission
and ER Graph
Laser Damage ThresholdThickness
(T)
Clear
Aperture
> 200:1> 1000:1CWPulsed
LPNIRB100650 - 695 nm695 - 1100 nm10 W/cm2
Continuous Block
25 W/cm2
Continuous Pass
0.006 J/cm2 (800 nm, 100 Hz,
36.4 fs, Ø189 µm)
0.1 J/cm2 (810 nm, 7.2 ns,
10 Hz, Ø0.216 mm)
0.55 ± 0.1 mmØ24.37 mm
(Ø0.96")
LPNIRC100-1100 - 1800 nm-
  • 消光比(ER)是近完美线偏振信号沿偏振片轴方向的最大透过率与偏振片旋转90°之后的最小透过率的比。这些偏振片的消光比在整个工作带宽上最少为200:1。在特定波长范围内消光比为>1000:1(详情请看曲线标签)。

 

Ø1
+1 数量 文档 产品型号 - 公英制通用 单价 现货 / 发货日
LPNIRB100 Support Documentation
LPNIRB100线偏振片,Ø1英寸,未安装,650 - 1100 nm
¥5,610.44
Today
LPNIRC100 Support Documentation
LPNIRC100线偏振片,Ø1英寸,未安装,1100 - 1800 nm
¥5,720.33
Today

线偏振片,Ø25.0 mm,已安装,SM1螺纹外壳

Item #Extinction RatioaTransmission
and ER Graph
Laser Damage
Threshold
Optic
Thickness (T)
Clear
Aperture
> 1000:1> 10 000:1> 100 000:1
LPUV100-MP2365 - 395 nm369 - 390 nm372 - 388 nm10 W/cm² Continuous Block
25 W/cm² Continuous Pass
220 ± 50 µmØ22.9 mm
(Ø0.90")
LPVISA100-MP2-480 - 550 nm-280 ± 50 µm
LPVISC100-MP2510 - 800 nm520 - 740 nm530 - 640 nm280 ± 50 µm
LPVIS100-MP2-550 - 1500 nm600 - 1200 nm260 ± 50 µm
LPNIR100-MP2650 - 2000 nm750 - 1800 nm850 - 1600 nm220 ± 50 µm
LPNIRA100-MP21000 - 3000 nm1200 - 3000 nm-250 ± 65 µm
LPMIR100-MP21500 - 5000 nm2000 - 4500 nm-200 ± 50 µm
  • 消光比(ER)是近完美线偏振信号沿偏振片轴方向的最大透过率与偏振片旋转90°之后的最小透过率的比。这些偏振片的消光比在整个工作带宽上最少为1000:1。在特定波长范围内消光比为>10,000:1或者>100,000:1(详情请查看曲线标签)。
+1 数量 文档 产品型号 - 公英制通用 单价 现货 / 发货日
LPUV100-MP2 Support Documentation
LPUV100-MP2线偏振片,Ø25.0 mm,SM1螺纹外壳,365 - 395 nm
¥7,408.43
2 Weeks
LPVISA100-MP2 Support Documentation
LPVISA100-MP2线偏振片,Ø25.0 mm,SM1螺纹外壳,480 - 550 nm
¥8,144.60
Today
LPVISC100-MP2 Support Documentation
LPVISC100-MP2线偏振片,Ø25.0 mm,SM1螺纹外壳,510 - 800 nm
¥8,144.60
Today
LPVIS100-MP2 Support Documentation
LPVIS100-MP2线偏振片,Ø25.0 mm,SM1螺纹外壳,550 - 1500 nm
¥9,144.93
Today
LPNIR100-MP2 Support Documentation
LPNIR100-MP2线偏振片,Ø25.0 mm,SM1螺纹外壳,650 - 2000 nm
¥9,475.21
2 Weeks
LPNIRA100-MP2 Support Documentation
LPNIRA100-MP2线偏振片,Ø25.0 mm,SM1螺纹外壳,1000 - 3000 nm
¥11,872.36
2 Weeks
LPMIR100-MP2 Support Documentation
LPMIR100-MP2线偏振片,Ø25.0 mm,SM1螺纹外壳,1500 - 5000 nm
¥15,269.93
2 Weeks

线偏振片,Ø1英寸,已安装,SM1螺纹外壳

Item #Extinction RatioaTransmission
and ER Graph
Laser Damage ThresholdOptic
Thickness (T)
Clear
Aperture
> 200:1> 1000:1CWPulsed
LPNIRB100-MP2650 - 695 nm695 - 1100 nm10 W/cm2
Continuous Block
25 W/cm2
Continuous Pass
0.006 J/cm2 (800 nm, 100 Hz,
36.4 fs, Ø189 µm)
0.1 J/cm2 (810 nm, 7.2 ns,
10 Hz, Ø0.216 mm)
0.55 ± 0.1 mmØ22.9 mm
(Ø0.90")
LPNIRC100-MP2-1100 - 1800 nm-
  • 消光比(ER)是近完美线偏振信号沿偏振片轴方向的最大透过率与偏振片旋转90°之后的最小透过率的比。这些偏振片的消光比在整个工作带宽上最少为200:1。在特定波长范围内消光比为>1000:1(详情请看曲线标签)。

 

+1 数量 文档 产品型号 - 公英制通用 单价 现货 / 发货日
LPNIRB100-MP2 Support Documentation
LPNIRB100-MP2线偏振片,Ø1英寸,SM1螺纹外壳,650 - 1100 nm
¥6,282.85
Today
LPNIRC100-MP2 Support Documentation
LPNIRC100-MP2线偏振片,Ø1英寸,SM1螺纹外壳,1100 - 1800 nm
¥6,245.35
Today